32-bit Microcontroller

CMOS

FR60Lite MB91220/S Series

MB91F223/F223S/MB91V220

OVERVIEW

MB91220/S series is a line of single-chip microcontrollers based on a 32-bit high-performance RISC CPU and integrating a variety of I/O resources for embedded control applications.
The MB91220/S series is designed to be best suited for embedded applications which require high-speed and high-performance processing power in the CPU, such as DVD players, printers, TV sets, and the PDP control.The MB91220/S series is a line of CPUs in the FR60Lite implemented by FR* family.

* : FR, the abbreviation of FUJITSU RISC controller, is a line of products of FUJITSU Limited.

Be sure to refer to the "Check Sheet" for the latest cautions on development.

[^0]"Check Sheet" lists the minimal requirement items to be checked to prevent problems beforehand in system development.

MB91220/S Series

FEATURES

- FR60Lite CPU

- 32-bit RISC, load/store architecture, 5 -stage pipeline
- Maximum operating frequency : 32 MHz (Source oscillation is 4 MHz with x 8 multiplier-PLL clock multiplier system)
- 16-bit fixed-length instructions (basic instructions)
- Instruction execution speed : 1 instruction per cycle
- Instruction set optimized for embedded application : Memory-to-memory transfer, bit manipulation, barrel shift instructions etc.
- Instructions supported by C language : Function entry/exit instructions, multiple-register load/store instructions.
- Register interlock function : Easier assembler coding enabled
- Built-in multiplier supported at the instruction level

Signed 32-bit multiplication: 5 cycles
Signed 16-bit multiplication: 3 cycles

- Interrupt (PC/PS save) : 6 cycles (16 priority levels)
- Harvard architecture allowing program access and data access to be executed simultaneously.
- Instruction set compatible with FR family
- Internal Peripheral Functions
- Internal ROM size \& ROM type Flash Memory : 512 Kbytes (MB91F223/S)
- Internal RAM size : 16 Kbytes (MB91F223/S) / 64 Kbytes (MB91V220)
- General-purpose ports : up to 120 ports (including 4 input-only ports)
- $8 / 10$-bit A/D converter (Sequential comparison type)

8/10-bit resolution : 24 channels
Conversion time : $3 \mu \mathrm{~s}(16 / 32 \mathrm{MHz}$)
Set the PLL multiplier and the division ratio of peripheral circuit clocks so that the above conversion time is achieved.
32 MHz : Source oscillation (4 MHz) with $\times 8$ multiplier, divided by 1
16 MHz : Source oscillation with $\times 8$ multiplier, divided by 2

- D/A converter (R-2R type)

8 -bit resolution : 2 channels

- External interrupt : 8 channels
- Bit search module (for REALOS)
- LIN-UART (full duplex double buffer type) : 4 channels Synchronous/asynchronous clock operations selectable Sync-break detection Dedicated built-in baud-rate generator
- ${ }^{2} \mathrm{C}$ Bus interface* $: 2$ channels
- Stepping motor controller (SMC) : 4 channels 10-bit PWM with 4 high-current outputs for each channel
- 8/16-bit PPG timer : 16 channels
- 16-bit reload timer : 3 channels
- 16 -bit free-run timer : 2 channels (ICU/OCU linkage)
- 16-bit pulse width counter : 1 channel
- Input capture : 4 channels (free-run timers ch. 0 and ch.1). ch. 0 linked to PWC
- Output compare : 2 channels (free-run timer ch.0)
- LCD controller : SEG0 to SEG31/COM0 to COM3 (shared with port)
- 16-bit timebase/watch dog timer

MB91220/S Series

(Continued)

- Sound generator : 3 channels
- Real-time clock
- 32 kHz sub clock (not supported in devices with an S suffix in the part number)
- C-CAN : 2 channels
- Low power consumption modes : sleep mode, stop mode, watch mode
- Package : LQFP-144 (FPT-144P-M08)
- CMOS technology : $0.35 \mu \mathrm{~m}$
- Power supply voltage : 5 V (Internal logic : $3.3 \mathrm{~V}, \mathrm{I} / \mathrm{O}: 5.0 \mathrm{~V}$ (step-down circuit used))
*: Purchase of Fujitsu $I^{2} C$ components conveys a license under the Philips $I^{2} \mathrm{C}$ Patent Rights to use, these components in an $I^{2} \mathrm{C}$ system provided that the system conforms to the $I^{2} \mathrm{C}$ Standard Specification as defined by Philips.

MB91220/S Series

■ PRODUCT LINEUP

The table below shows the product lineup of the MB91220/S series. Embedded peripheral functions which are not listed are common functions.

	MB91V220	MB91F223/S
ROM/Flash size	External SRAM	512 Kbytes
RAM size	64 Kbytes	16 Kbytes
External interrupt	8 channels	
DMA Controller	5 channels	
8/10-bit A/D Converter	24 channels	
D/A Converter	2 channels	
LIN-UART	4 channels	
${ }^{12} \mathrm{C}$	2 channels	
Stepping Motor Controller	4 channels	
8/16-bit PPG Timer	16 channels	
16-bit Reload Timer	3 channels	
16-bit Free-Run Timer	2 channels	
16-bit Pulse Width Counter	1 channel	
Input Capture Unit	4 channels	
Output Compare Unit	2 channels	
LCD Controller	4 COM, 32 SEG	
Sound Generator	3 channels	
Real Time Clock	Yes	
32 kHz Sub Clock	Yes	$\begin{aligned} & \text { Yes : MB91F223 } \\ & \text { No : MB91F223S } \end{aligned}$
External bus	Addr 16 bits Data 16 bits	
Others	Evaluation product	Flash memory product
On Chip Debug Support Unit	DSU4	-
C-CAN	2 channels 32-message buffer	

MB91220/S Series

PIN ASSIGNMENT

(TOP VIEW)

(FPT-144P-M08)

MB91220/S Series

- PIN DESCRIPTIONS

Pin No.	Pin name	$\begin{gathered} \text { I/O } \\ \text { circuit } \\ \text { type* } \end{gathered}$	Function
129	X0	A	Main clock (oscillator) input.
128	X1	A	Main clock (oscillator) output.
16	X0A	B	Sub clock (oscillator) input.
17	X1A	B	Sub clock (oscillator) output.
108	INITX	C	External reset input
105	MD2	D	Mode pin 2. The setting on this pin determines the basic operation mode. Connect it to VCC or VSS.
106	MD1	D	Mode pin 1. The setting on this pin determines the basic operation mode. Connect it to VCC or VSS.
107	MDO	D	Mode pin 0 . The setting on this pin determines the basic operation mode. Connect it to VCC or VSS.
29 to 35	P00 to P06	G	General-purpose I/O port
	SEG24 to SEG30		SEG output from LCDC
	D00 to D06		External data bus bit00 to bit06
36	P07	G	General-purpose I/O port
	SEG31		SEG output from LCDC
	ATGX		External trigger input for A/D converter.
	D07		External data bus bit07
21 to 28	P10 to P17	G	General-purpose I/O port
	SEG16 to SEG23		SEG outputs from LCDC
	D08 to D15		External data bus bit08 to bit15
144	P20	F	General-purpose I/O port
	SEG0		SEG output from LCDC
	A00		External address bus bit00
1 to 7	P21 to P27	F	General-purpose I/O port
	SEG1 to SEG7		SEG outputs from LCDC
	A01 to A07		External address bus bit01 to bit07
8 to 15	P30 to P37	F	General-purpose I/O port
	SEG8 to SEG15		SEG outputs from LCDC
	A08 to A15		External address bus bit08 to bit15
116	P40	M	General-purpose I/O port: Valid when the data input specification is prohibited on UARTO.
	SINO		UART0 data input. Because this input is used as necessary while UART0 is used for input operation, the port output needs to be disabled except when it is used intentionally.
	INTO		External interrupt input. Because those inputs are used as necessary while the pertinent external interrupt is enabled, the port outputs need to be disabled except when they are used intentionally.

(Continued)

MB91220/S Series

Pin No.	Pin name	I/O circuit type*	Function
117	P41	1	General-purpose I/O port: Valid when the data output specification is prohibited on UARTO.
	SOTO		UARTO data output: Valid when the clock output specification is permitted on UARTO .
118	P42	1	General-purpose I/O port: Valid when the clock output specification is prohibited on UARTO.
	SCKO		UARTO clock input/output: Valid when the clock output specification is permitted on UARTO.
119	P43	M	General-purpose I/O port: Valid when the data input specification is prohibited on LIN-UART1.
	SIN3		UART1 data input. Because this input is used as necessary while UART1 is used for input operation, the port output needs to be disabled except when it is used intentionally.
	INT1		External interrupt input. Because those inputs are used as necessary while the pertinent external interrupt is enabled, the port outputs need to be disabled except when they are used intentionally.
120	P44	1	General-purpose I/O port: Valid when the data output specification on UART1 is prohibited.
	SOT3		LIN-UART1 data output: Valid when the data output specification is permitted on LIN-UART1.
121	P45	1	General-purpose I/O port: Valid when the clock output specification is prohibited on LIN-UART1.
	SCK3		LIN-UART1 clock input/output: Valid when the clock output specification is permitted on LIN-UART1.
134	P46	1	General-purpose I/O port
	ASX		Address strobe output: Valid when the address strobe output is permitted.
135	P47	1	General-purpose I/O port
	SYSCLK		System clock output: Valid when the system clock output specification is permitted. A clock with the same frequency as that external bus operation frequency is output at this pin (Clock output stops at transition to the STOP state).
122	P50	M	General-purpose I/O port : Valid when the data input specification is prohibited on LIN-UART2.
	SIN4		LIN-UART2 data input. Because this input is used as necessary while LIN-UART2 is used for input operation, the port output needs to be disabled except when it is used intentionally.
	CKO		External clock input for free-run timer 0
	CSOX		Chip select 0 output: Valid when the chip select 0 is permitted to output.

(Continued)

MB91220/S Series

Pin No.	Pin name	$\begin{gathered} \text { I/O } \\ \begin{array}{c} \text { circuit } \\ \text { type* } \end{array} \end{gathered}$	Function
123	P51	1	General-purpose I/O port: Valid when the data output specification is prohibited on LIN-UART2.
	SOT4		LIN-UART2 data output: Valid when the data output specification is permitted on LIN-UART2.
	CS1X		Chip select 1 output: Valid when the output specification is permitted on chip select 1 .
124	P52	1	General-purpose I/O port: Valid when clock output is prohibited on LIN-UART2.
	SCK4		LIN-UART2 clock input/output: Valid when the clock output specification is permitted on LIN-UART2.
	CS2X		Chip select 2 output: Valid when the output specification is permitted on chip select 2.
125	P53	M	General-purpose I/O port: Valid when the data input specification is prohibited on LIN-UART3.
	SIN5		LIN-UART3 data input. Because this input is used as necessary while LINUART3 is used for input operation, the port output needs to be disabled except when it is used intentionally.
	CK1		External clock input for free-run timer 1
	CS3X		Chip select 3 output: Valid when the output specification is permitted on chip select 3 .
130	P54	1	General-purpose I/O port: Valid when data output specification is prohibited on LIN-UART3.
	SOT5		LIN-UART3 data output: Valid when the data output specification is permitted on LIN-UART3.
	RDX		External bus read strobe output: Valid at the external bus mode.
131	P55	1	General-purpose I/O port: Valid when clock output is prohibited on LIN-UART3.
	SCK5		LIN-UART3 clock input/output: Valid when the clock output specification is permitted on LIN-UART3.
	WROX		External bus write strobe output: Valid when the WROX output is permitted at the external bus mode.
132	P56	1	General-purpose I/O port
	OUTO		Output compare output
	WR1X		External bus write strobe output: Valid when the WR1X output is permitted at the external bus mode.
133	P57	J	General-purpose I/O port
	OUT1		Output compare output
	RDY		External ready input: Valid when the external ready input specification is permitted.

(Continued)

Pin No.	Pin name	$\begin{gathered} \text { I/O } \\ \text { circuit } \\ \text { type* } \end{gathered}$	Function
73 to 80	P60 to P67	E	General-purpose I/O ports: Valid when analog input specification is prohibited.
	AN0 to AN7		A/D converter analog inputs: Valid when the analog input is selected in the ADER register.
109	P70	1	General-purpose I/O port
	INT6		External interrupt input. Because this input is used as necessary while the pertinent external interrupt is enabled, the pot output need to be disabled except when it is used intentionally.
	RX0		RX0 input pin for CANO
110	P71	1	General-purpose I/O port
	TX0		TX0 input pin for CANO
111	P72	1	General-purpose I/O port
	INT7		External interrupt input. Because this input is used as necessary while the pertinent external interrupt is enabled, the pot output need to be disabled except when it is used intentionally.
	RX1		RX1 input pin for CAN1
112	P73	1	General-purpose I/O port
	TX1		TX1 output pin for CAN1
69 to 65	P80 to P84	E	General-purpose I/O port: Valid when analog input specification is prohibited.
	AN16 to AN20		A/D converter analog inputs: Valid when the analog input is selected in the ADER register.
64	P85	E	General-purpose I/O port: Valid when analog input specification is prohibited.
	AN21		A/D converter analog inputs: Valid when the analog input is selected in the ADER register.
	INT3		External interrupt input. Because this input is used as necessary while the pertinent external interrupt is enabled, the pot output need to be disabled except when it is used intentionally.
63	P86	E	General-purpose I/O port: Valid when analog input specification is prohibited.
	AN22		A/D converter analog inputs: Valid when the analog input is selected in the ADER register.
	INT4		External interrupt input. Because this input is used as necessary while the pertinent external interrupt is enabled, the pot output need to be disabled except when it is used intentionally.

(Continued)

MB91220/S Series

Pin No.	Pin name	I/O circuit type*	Function
62	P87	E	General-purpose I/O port: Valid when analog input specification is prohibited.
	AN23		A/D converter analog inputs: Valid when the analog input is selected in the ADER register.
	INT5		External interrupt input. Because this input is used as necessary while the pertinent external interrupt is enabled, the pot output need to be disabled except when it is used intentionally.
61	P90	L	General-purpose I/O port
	DAO		D/A converter analog output
60	P91	L	General-purpose I/O port
	DA1		D/A converter analog output
59	P92	1	General-purpose I/O port
	SGAO		Sound generator 0 output
58	P93	1	General-purpose I/O port
	SGOO		Sound generator 0 output
57	P94	1	General-purpose I/O port
	SGA1		Sound generator 1 output
56	P95	1	General-purpose I/O port
	SGO1		Sound generator 1 output
55	P96	I	General-purpose I/O port
	SGA2		Sound generator 2 output
54	P97	1	General-purpose I/O port
	SGO2		Sound generator 2 output
91	PA0	H	General-purpose I/O port
	PWM1P3		Stepping motor controller PWM output pin
92	PA1	H	General-purpose I/O port
	PWM1M3		Stepping motor controller PWM output pin
93	PA2	H	General-purpose I/O port
	PWM2P3		Stepping motor controller PWM output pin
94	PA3	H	General-purpose I/O port
	PWM2M3		Stepping motor controller PWM output pin
40	PB0	1	General-purpose I/O port
	PPG8H		PPG timer 8 output: Valid when the output specification is permitted on PPG timer 8.
41	PB1	1	General-purpose I/O port
	PPG9H		PPG timer 9 output: Valid when the output specification is permitted on PPG timer 9.

(Continued)

MB91220/S Series

Pin No.	Pin name	$\begin{gathered} \text { I/O } \\ \begin{array}{c} \text { circuit } \\ \text { type* } \end{array} \end{gathered}$	Function
42	PB2	1	General-purpose I/O port
	PPG10H		PPG timer 10 output: Valid when the output specification is permitted on PPG timer 10.
43	PB3	1	General-purpose I/O port
	PPG11H		PPG timer 11 output: Valid when the output specification is permitted on PPG timer 11.
44	PB4	H	General-purpose I/O port
	PWM1P1		Stepping motor controller PWM output pin
45	PB5	H	General-purpose I/O port
	PWM1M1		Stepping motor controller PWM output pin
46	PB6	H	General-purpose I/O port
	PWM2P1		Stepping motor controller PWM output pin
47	PB7	H	General-purpose I/O port
	PWM2M1		Stepping motor controller PWM output pin
48	PC0	H	General-purpose I/O port
	PWM1P0		Stepping motor controller PWM output pin
49	PC1	H	General-purpose I/O port
	PWM1M0		Stepping motor controller PWM output pin
50	PC2	H	General-purpose I/O port
	PWM2P0		Stepping motor controller PWM output pin
51	PC3	H	General-purpose I/O port
	PWM2M0		Stepping motor controller PWM output pin
136	PDO	K	General-purpose I/O port
	TINO		External event input pin for reload timer 0
	INO		Trigger input for input capture 0 : Valid when input capture trigger input is permitted and an input port is specified. If this pin is selected for input capture input, it is used as necessary for input. Therefore the port output needs to be disabled except when it is used intentionally.
	PWC0		PWCO pulse width counter 0 input: Valid when the PWCO pulse width counter 0 input is permitted.
	INT2		External interrupt input. Because those inputs are used as necessary while the pertinent external interrupt is enabled, the port outputs need to be disabled except when they are used intentionally.
	Vo		LCD driver power supply input pin

(Continued)

MB91220/S Series

Pin No.	Pin name	$\begin{gathered} \text { I/O } \\ \begin{array}{c} \text { circuit } \\ \text { type* } \end{array} \end{gathered}$	Function
137	PD1	K	General-purpose I/O port
	TIN1		External event input pin for reload timer 1
	IN1		Trigger input for input capture 1: Valid when input capture trigger input is permitted and an input port is specified. If this pin is selected for input capture input, it is used as necessary for input. Therefore the port output needs to be disabled except when it is used intentionally.
	V1		LCD driver power supply input pin
138	PD2	K	General-purpose I/O port
	TIN2		External event input pin for reload timer 2
	IN2		Trigger input for input capture 2: Valid when input capture trigger input is permitted and an input port is specified. If this pin is selected for input capture input, it is used as necessary for input. Therefore the port output needs to be disabled except when it is used intentionally.
	V2		LCD driver power supply input pin
139	PD3	K	General-purpose I/O port
	IN3		Trigger input for input capture 3: Valid when input capture trigger input is permitted and an input port is specified. If this pin is selected for input capture input, it is used as necessary for input. Therefore the port output needs to be disabled except when it is used intentionally.
	V3		LCD driver power supply input pin Power supply pin for the embedded ladder resistor.
140	PD4	F	General-purpose I/O port
	COM0		COM0 output from LCDC
	PPG1H		PPG timer 1 output: Valid when the output specification is permitted on PPG timer 1.
141	PD5	F	General-purpose I/O port
	COM1		COM1 output from LCDC
	PPG3H		PPG timer 3 output: Valid when the output specification is permitted on PPG timer 3.
142	PD6	F	General-purpose I/O port
	COM2		COM2 output from LCDC
	PPG5H		PPG timer 5 output: Valid when the output specification is permitted on PPG timer 5.
143	PD7	F	General-purpose I/O port
	COM3		COM3 output from LCDC
	PPG7H		PPG timer 7 output: Valid when the output specification is permitted on PPG timer 7.
95	PE0	H	General-purpose I/O port
	PWM1P2		Stepping motor controller PWM output pin

(Continued)

(Continued)

Pin No.	Pin name	$\begin{gathered} \text { I/O } \\ \text { circuit } \\ \text { type* } \end{gathered}$	Function
96	PE1	H	General-purpose I/O port
	PWM1M2		Stepping motor controller PWM output pin
97	PE2	H	General-purpose I/O port
	PWM2P2		Stepping motor controller PWM output pin
98	PE3	H	General-purpose I/O port
	PWM2M2		Stepping motor controller PWM output pin
99	PE4	N	General-purpose I/O port
	PPG12H		PPG timer 12 output: Valid when the output specification is permitted on PPG timer 12.
	SDAO		$1^{2} \mathrm{C} 0$ serial data input/output pin
100	PE5	N	General-purpose I/O port
	PPG13H		PPG timer 13 output: Valid when the output specification is permitted on PPG timer 13.
	SCLO		$1^{2} \mathrm{C} 0$ serial clock input/output pin
101	PE6	N	General-purpose I/O port
	PPG14H		PPG timer 14 output: Valid when the output specification is permitted on PPG timer 14.
	SDA1		${ }^{1} 2 \mathrm{C} 1$ serial data input/output pin
102	PE7	N	General-purpose I/O port
	PPG15H		PPG timer 15 output: Valid when the output specification is permitted on PPG timer 15.
	SCL1		$1^{2} \mathrm{C} 1$ serial clock input/output pin
81 to 88	PF0 to PF7	E	General-purpose I/O ports: Valid when analog input is prohibited.
	AN8 to AN15		A/D converter analog inputs: Valid when the analog input is selected in the ADER register.
37	PGO	I	General-purpose I/O port.
	PPGOH		PPG timer 0 output: Valid when the output specification is permitted on PPG timer 0.
113	PG1	1	General-purpose I/O port
	TOTO		External timer output for reload timer 0
	PPG2H		PPG timer 2 output: Valid when the output specification is permitted on PPG timer 2.
114	PG2	1	General-purpose I/O port
	TOT1		External timer output for reload timer 1
	PPG4H		PPG timer 4 output: Valid when the output specification is permitted on PPG timer 4.
115	PG3	I	General-purpose I/O port
	TOT2		External timer output for reload timer 2
	PPG6H		PPG timer 6 output: Valid when the output specification is permitted on PPG timer 6.

*: For information about the I/O circuit type, refer to "■ I/O CIRCUIT TYPE".

MB91220/S Series

[Power supply and GND pins]

Pin No.	Pin name	Function
19,127	VSS	GND pins. The potentials of these pins must be the same.
18,126	VCC	Power supply pins. The potentials of these pins must be the same.
70	AVCC	Analog power supply pin for A/D converter
71	AVRH	Analog reference power supply pin for A/D converter
72	AVSS/AVRL	Analog GND or analog reference power supply pin for A/D converter
20	VCC3C	Capacitor coupling pin for internal regulator
$38,52,89,103$	DVCC	Power supply pins for stepping motor controller
$39,53,90,104$	DVSS	GND pins for stepping motor controller

MB91220/S Series

I/O CIRCUIT TYPE

Group	Circuit Type	Remarks
A		For high speed (source oscillation of main clock) - Oscillation circuit - Feedback resistance X0 : approx. $1 \mathrm{M} \Omega$
B		For low speed (source oscillation of sub clock) - Oscillation circuit - Feedback resistance XOA : approx. $7 \mathrm{M} \Omega$
C		- Hysteresis (CMOS level) input - Pull-up resistor supported Pull-up resistor value = approx. $50 \mathrm{k} \Omega$ - No standby control

(Continued)

MB91220/S Series

Group	Circuit Type	Remarks
D		- Flash memory product Hysteresis input High-voltage control for Flash test supported
E		- CMOS output (4 mA) - Hysteresis (Automotive level) input (Standby control supported) - Analog input (Analog input is valid when the corresponding ADER bit is set to 1 .)
F		- CMOS output (4 mA) - LCDC output - Hysteresis (Automotive level) input (Standby control provided)

(Continued)

Group	Circuit Type	Remarks
G		- CMOS output (4 mA) - LCDC output - Hysteresis (Automotive level) input (Standby control supported) - Hysteresis (TTL level) input (Standby control supported)
H		- CMOS output High current output for PWM (30 mA) - Hysteresis (Automotive level) input (Standby control supported)
1		- CMOS output (4 mA) - Hysteresis (Automotive level) input (Standby control supported)

(Continued)

MB91220/S Series

Group		Remarks	Circuit Type • CMOS output (4 mA) Hysteresis (Automotive level) input (Standby control supported) Hysteresis (TTL level) input (Standby control supported)

(Continued)

MB91220/S Series

(Continued)

Group	Circuit Type	Remarks
L		- CMOS output (4 mA) - D/A converter output - Hysteresis (automotive level) input (Standby control supported)
M		- CMOS output (4 mA) - Hysteresis (automotive level) input (standby control supported) - Hysteresis (CMOS level) input (Standby control supported)
N		- CMOS output (3 mA) - Hysteresis (automotive level) input (Standby control supported) - Hysteresis (CMOS level) input (Standby control supported)

MB91220/S Series

HANDLING DEVICES

- Preventing Latch-up

Latch-up may occur in a CMOS IC, if a voltage greater than V_{cc} or less than V ss is applied to input and output pin, or if an above-rating voltage is applied between VCC and VSS pins. When latch-up occurs, it may significantly increase the power supply current, and may cause thermal destruction of an element. When you use a CMOS IC, be very careful not to exceed the maximum rating.

- Treatment of Unused Input Pins

Do not leave unused input pins open, as this may cause a malfunction. Handle by performing a pull-up or pulldown with a resistance of $2 \mathrm{k} \Omega$ or more. An unused I/O pin should be set to the output status and left open. When set to the input status, it should be handled in the same way as an input pin.

- Power supply pins

If there are multiple VCC and VSS pins, from the point of view of device design pins to be of the same potential are connected inside the device to prevent such malfunctioning as latch-up. However, you must connect all the pins to the external power supply and ground lines to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating. Moreover, connect the current supply source to the VCC and VSS pins of this device via a low impedance.
Furthermore, it is also advisable to connect a ceramic bypass capacitor of approximately $0.1 \mu \mathrm{~F}$ between VCC and VSS near this device.

This device incorporates a regulator. When using the device with 5 V power supply, apply that power supply to the VCC pin and always connect the VCC3C pin to a capacitor with $1 \mu \mathrm{~F}$ or more for the purpose of regulator.

- Example of power supply connection

- Crystal oscillator circuit

Noise near the X0/X1 pins and X0A/X1A pins may cause the device to malfunction. Design the PC board such that $\mathrm{X0} / \mathrm{X} 1$ pins, $\mathrm{X0A} / \mathrm{X} 1 \mathrm{~A}$ pins, the crystal oscillator (or ceramic oscillator), and the bypass capacitor to the ground are placed as near one another as possible. When routing the X 0 and X 1 signals, they should be shielded for use on the board. Caution must be taken especially when using a pin next to the X 0 .
It is strongly recommended that the PC board artwork be designed such that the $\mathrm{X} 0, \mathrm{X} 1, \mathrm{X} 0 \mathrm{~A}$ and X 1 A pins are surrounded by ground plane because stable operation can be expected with such a layout.

In addition, the X0A/X1A pins must be surrounded by ground plane even if the sub clock is disabled.
When using MB91F223S, connect the X0A pin to GND and leave the X1A pin open.
Please ask the crystal maker to evaluate the oscillational characteristics of the crystal and this device.

- Mode pins (MD0 to MD2)

These pins should be connected directly to VCC or VSS pins. To prevent the device erroneously switching to test mode due to noise, design the PC board such that the distance between the mode pins and VCC or VSS pin is as short as possible and the connection impedance is now.

- Operation at start-up

Always use the INITX pin to perform a setting initialization reset (INIT) after power-on. Immediately after poweron, hold the low level input to the INITX pin for the stabilization wait time required for the oscillator circuit, to take the oscillation stabilization wait time for the oscillator circuit.
For INIT via the INITX pin, the oscillation stabilization wait time setting is initialized to the minimum value.

- Source oscillation input upon power-on

When power-on, always input the clock for the duration of the oscillation stabilization delay time.

- Treatment of power supply pins on A/D converter

Connect to ensure " $A V c c=A V R H=V c c$ and $A V s s=V_{s s}$ " even if the A / D converter is not in use.

- Power-on sequence for power supply analog input of A / D converter

Always supply power to the A/D converter (AVCC and AVRH) and apply analog input (ANO to AN 23) after turning on the digital power supply (VCC). Also, turn off the power supply for the A/D converter and analog input before turning off the digital power supply (VCC). AVR should not exceed AVcc when turning on and off. Even when using a pin shared with analog input as an input port, ensure that the input voltage does not exceed $A V c c$.

- Handling power supply for high-current output buffer pin (DVCC, DVSS)

Always apply power to high-current output buffer pins (DVCC) after turning on the digital power supply (VCC). In addition, turn off the power supply for the high-current output buffer pins before turning off the digital power supply (VCC).
Apply the same power as for high-current output buffer pins even when using such pins as general-purpose ports (There is no problem in turning on or off the power supply for the high-current output buffer pins and the digital power supply at the same time).

Always use the GND pin (DVSS) for the high-current output buffer pin the same potential as the digital GND pin (VSS).

MB91220/S Series

- Switching from main clock mode to sub clock mode or stop mode

Always stop the main clock after switching the main clock mode to the sub clock mode or stop mode. Also secure the oscillation stabilization wait time when returning from the sub clock mode or stop mode to the main clock mode.

- Flash write

Note that Flash write is not possible in the sub mode.

MB91220/S Series

BLOCK DIAGRAM

*1 : The devices with an S suffix in the part number does not support the sub-block.
*2 : DSU is built into the MB91V220 only.

MB91220/S Series

MEMORY SPACE

- Memory space

The FR family has 4 Gbytes logical address space (2^{22} addresses) linearly accessible to the CPU space.

- Direct addressing area

The following address space areas are used as I/O areas.
These areas are called direct addressing areas, in which the address of an operand can be specified directly during on instruction.
The direct area varies depending on the size of data to be accessed as follows.
\rightarrow Byte data access : 000 to 0FFH
\rightarrow Halfword data access : 000 to 1 FFH
\rightarrow Word data access : 000 to 3FFH

MB91220/S Series

MEMORY MAP

MB91V220

MB91220/S Series

MB91F223/S

Note : Each mode is set depending on the mode vector fetch after INITX is negated. For mode settings, refer to MODE SETTINGS".

MB91220/S Series

MODE SETTINGS

The FR family, sets the operation mode using mode pins (MD2 to MDO) and mode data.

- Mode pins

The mode pins (MD2 to MD0) specify how the mode vector fetch and reset vector fetch is performed.
Other settings than these in the table are prohibited.

Mode pin			Mode name	Reset vector access area
MD2	MD1	MD0		
0	0	0	Internal ROM mode vector	

- Mode data

Data written to the internal mode register (MODR) by mode vector fetch is called mode data.
After an operating mode has been set in the mode register the device operates in that operating mode.
The mode data is set by all reset sources. User programs cannot set data to the mode register.

Details of mode data

bit31	bit30	bit29	bit28	bit27	bit26	bit25	bit24
0	0	0	0	0	ROMA	WTH1	WTH2
Operating mode setting bits							

Bit 31 to bit 27 are reserved.
Always set the value to " 00000 b". Otherwise, the operation is not guaranteed.

[bit26] ROMA (Internal ROM enabling bit)

This bit specifies whether to enable internal ROM area.

ROMA	Function	Remarks
0	External ROM mode	Internal F-bus RAM is enabled, and the internal ROM area $(80000 \mathrm{H}$ to 100000H) becomes an external area.
1	Internal ROM mode	Internal ROM area is enabled.

[bit25, bit24] WTH1, WTH0 (bus width setting bits)
Specify the bus width for the external bus mode.
In the external bus mode, this value is set to DBW1 and DBW0 bits in ACRO (CSO area).

WTH1	WTH0	Function
0	0	8-bit bus width
0	1	16 -bit bus width
1	0	-
1	1	Single chip mode

MB91220/S Series

Note : Mode data set in the mode vector must be placed as byte data at 000FFFF8 .
Place the data in the most significant byte from bit 31 to bit 24 as the FR family uses the big endian system for byte endian.

Incorrect	bit	2423		1615	87	0
	000FFFF8H	XXXXXXXX	XXXXXXXX	XXXXXXXX	Mode Data	
Correct	000FFFF88	Mode Data	XXXXXXXX	XXXXXXXX	XXXXXXXX	
	000FFFFCH	Reset vector				

MB91220/S Series

I/O MAP

The following table shows the correspondence between the memory space area and each register of the peripheral resource.
[How to read the map]

Address	Register				Block
	+ 0	+1	+ 2	+ 3	
000000н	PDRO [R/W] B $\triangle X X X X X X X A$	PDR1 [R/W] B XXXXXXXX	PDR2 [R/W] B XXXXXXXX	PDR3 [R/W] B XXXXXXX	T-unit Port data register
		Read/Write (B : byte, H Initial value _ Register na register at 4	attribute, Acces : halfword, W : after reset (First-column $n+1$, etc.)	unit ord) register at add	$4 n$; second-column

Note :
Initial values of register bits are represented as follows :
" 1 " : Initial value " 1 "
" 0 " : Initial value "0"
" X " : Initial value "undefined"
" - " : No physical register present at this location
Access by any undescribed data access attribute is prohibited.

MB91220/S Series

Address	Register				Block
	+0	+1	+2	+3	
00000000н	PDRO[R/W] B,H XXXXXXXX	$\begin{aligned} & \hline \text { PDR1[R/W] B,H } \\ & \text { XXXXXXXX } \end{aligned}$	$\begin{gathered} \text { PDR2[R/W] B,H } \\ \text { XXXXXXX } \end{gathered}$	$\begin{gathered} \text { PDR3[R/W] B,H } \\ \text { XXXXXXX } \end{gathered}$	Port Data Register
00000004н	$\begin{aligned} & \text { PDR4[R/W] B,H } \\ & \text { XXXXXXX } \end{aligned}$	$\begin{aligned} & \text { PDR5[R/W] B,H } \\ & \text { XXXXXXXX } \end{aligned}$	$\begin{aligned} & \hline \text { PDR6[R/W] B,H } \\ & \text { XXXXXXX } \end{aligned}$	$\begin{gathered} \text { PDR7[R/W] B,H } \\ ---\mathrm{XXXX} \end{gathered}$	
00000008н	PDR8[R/W] B,H XXXXXXXX	$\begin{aligned} & \text { PDR9[R/W] B,H } \\ & \text { XXXXXXXX } \end{aligned}$	$\begin{gathered} \text { PDRA[R/W] B,H } \\ ---\mathrm{XXXX} \end{gathered}$	PDRB[R/W] B,H XXXXXXXX	
0000000Сн	$\begin{gathered} \text { PDRC[R/W] B,H } \\ \ldots--X X X X \end{gathered}$	$\begin{aligned} & \hline \text { PDRD[R/W] B,H } \\ & 0000 X X X X \end{aligned}$	PDRE[R/W] B,H XXXXXXXX	PDRF[R/W] B,H XXXXXXXX	
00000010н	$\begin{gathered} \text { PDRG[R/W] B,H } \\ ---X X X X \end{gathered}$	-	-	-	
$\begin{gathered} \hline 00000014 \mathrm{H} \\ \text { to } \\ 0000003 C_{H} \end{gathered}$	-				Reserved
00000040н	$\begin{gathered} \text { EIRRO [R/W] } \\ \text { B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \hline \text { ENIRO }[\mathrm{R} / \mathrm{W}] \\ \mathrm{B}, \mathrm{H}, \mathrm{~W} \\ 00000000 \end{gathered}$	ELVRO [R/W] B,H,W 0000000000000000		External Interrupt
00000044H	$\begin{gathered} \text { DICR [R/W] B,------ } \mathrm{C}, \mathrm{~W} \\ \hline \end{gathered}$	$\begin{gathered} \text { HRCL[R/W] B } \\ 0-11111 \end{gathered}$			Delayed Interrupt
00000048	TMRLRO[W] H,W XXXXXXXX XXXXXXXX		TMRO[R] H,W XXXXXXXX XXXXXXXX		Reload Timer0
0000004Сн	-	Reserved	TMCSRO[R/W] B,H,W---000000000000		
00000050н	TMRLR1[W] H,W XXXXXXXX XXXXXXXX		TMR1[R] H,W XXXXXXXX XXXXXXXX		Reload Timer 1
00000054н	-		TMCSR1[R/W] B,H,W---000000000000		
00000058н	TMRLR2[W] H,W XXXXXXXX XXXXXXXX		TMR2[R] H,W XXXXXXXX XXXXXXXX		Reload Timer2
0000005Сн	-		TMCSR2[R/W] B,H,W---000000000000		
$\begin{gathered} \hline 00000060_{\mathrm{H}} \\ \text { to } \\ 00000064_{\mathrm{H}} \end{gathered}$	-				Reserved
00000068н	$\begin{gathered} \text { DACR1[R/W] } \\ \text { B, H, W } \\ ------0 \end{gathered}$	$\begin{gathered} \text { DACRO[R/W] } \\ \text { B, H, W } \\ ------0 \end{gathered}$	$\begin{gathered} \hline \text { DADR1[R/W] } \\ \text { B, H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \hline \text { DADRO[R/W] } \\ \text { B, H,W } \\ \text { XXXXXXXX } \end{gathered}$	DAC
$\begin{aligned} & 0000006 \mathrm{CH}_{\mathrm{H}} \\ & \text { to } \\ & 0000007 \mathrm{C}_{\mathrm{H}} \end{aligned}$					Reserved

(Continued)

MB91220/S Series

Address	Register				Block
	+0	+1	+2	+3	
00000080н	-	$\begin{gathered} \hline \text { SGDBLO[R/W] } \\ B,--\cdots,---0 \\ ----0 \end{gathered}$	$\begin{aligned} & \text { SGCRO[R/W] B,H,W } \\ & 0----00000-000 \end{aligned}$		Sound Generator 0
00000084н	$\begin{gathered} \hline \text { SGARO[R/W] } \\ \text { B,H,W } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { SGFRO[R/W] } \\ \text { B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \hline \text { SGTRO[R/W] } \\ \text { B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \hline \text { SGDRO[R/W] } \\ \text { B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	
00000088H	-	$\begin{gathered} \hline \text { SGDBL1[R/W] } \\ B,--\cdots,---0 \\ ----0 \end{gathered}$	$\begin{aligned} & \text { SGCR1[R/W] B,H,W } \\ & \text { 0----00 000--000 } \end{aligned}$		Sound Generator 1
0000008Cн	$\begin{gathered} \text { SGAR1[R/W] } \\ \text { B,H,W } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { SGFR1[R/W] } \\ B, H, W \\ \text { XXXXXXX } \end{gathered}$	$\begin{gathered} \text { SGTR1[R/W] } \\ B, H, W \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { SGDR1[R/W] } \\ \text { B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	
00000090н	-	$\begin{gathered} \hline \text { SGDBL2[R/W] } \\ B, H, W \\ -----0 \end{gathered}$	SGCR2[R/W, R] B,H,W$0----00000-000$		Sound Generator 2
00000094н	$\begin{gathered} \text { SGAR2[R/W] } \\ B, H, W \\ 00000000 \end{gathered}$	$\begin{gathered} \text { SGFR2[R/W] } \\ B, H, W \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { SGTR2[R/W] } \\ B, H, W \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { SGDR2[R/W] } \\ \text { B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	
00000098H	$\begin{gathered} \hline \text { LCDCMR[R/W] } \\ \text { B,H,W } \\ ----0000 \end{gathered}$	-	LCRO [R/W] B,H,W 00010000	LCR1 [R/W] B,H,W 00000000	LCD Controller Driver
0000009Сн	$\begin{gathered} \hline \text { VRAMO [R/W] } \\ \text { B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { VRAM1[R/W] } \\ \text { B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \hline \text { VRAM2 [R/W] } \\ B, H, W \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \hline \text { VRAM3 [R/W] } \\ B, H, W \\ \text { XXXXXXXX } \end{gathered}$	
000000АОн	$\begin{gathered} \text { VRAM4 [R/W] } \\ \text { B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { VRAM5 [R/W] } \\ \text { B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { VRAM6 [R/W] } \\ \text { B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { VRAM7 [R/W] } \\ \text { B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	
000000A4н	$\begin{gathered} \text { VRAM8 [R/W] } \\ \text { B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { VRAM9 [R/W] } \\ \text { B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { VRAM10[R/W] } \\ \text { B,H,W } \\ \text { XXXXXXX } \end{gathered}$	$\begin{gathered} \text { VRAM11[R/W] } \\ \text { B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	
000000A8н	$\begin{gathered} \text { VRAM12[R/W] } \\ \text { B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { VRAM13[R/W] } \\ \text { B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { VRAM14[R/W] } \\ \text { B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { VRAM15[R/W] } \\ \text { B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	
000000ACH	- -1				Reserved
000000BОн	$\begin{gathered} \hline \text { SCR3 [R/W] B,H,W } \\ 00000000 \end{gathered}$	SMR3 [R/W] B,H,W 00000000	$\begin{aligned} & \text { SSR3 [R/W] B,H,W } \\ & \text { 00001000 } \end{aligned}$	RDR3 [R/W] B,H,W 00000000	LIN-UART1
000000B4н	$\begin{gathered} \text { ESCR3[R/W] } \\ \text { B,H,W } \\ 00000 \times 00 \end{gathered}$	$\begin{gathered} \mathrm{ECCR} 3[\mathrm{R} / \mathrm{W}] \\ \mathrm{B}, \mathrm{H}, \mathrm{~W} \\ 000000 \mathrm{XX} \end{gathered}$	$\begin{gathered} \text { BGR13[R/W] } \\ \text { B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { BGR03[R/W] } \\ \text { B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	
000000B8н	$\begin{gathered} \text { SCR4 [R/W] B,H,W } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { SMR4 [R/W] B,H,W } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { SSR4 [R/W] B,H,W } \\ 00001000 \end{gathered}$	$\begin{gathered} \text { RDR4 [R/W] B,H,W } \\ 00000000 \end{gathered}$	LIN-UART2
000000 BC н	$\begin{gathered} \text { ESCR4[R/W] } \\ B, H, W \\ 00000 \times 00 \end{gathered}$	$\begin{gathered} \text { ECCR4[R/W] } \\ B, H, W \\ 000000 X X \end{gathered}$	$\begin{gathered} \text { BGR14[R/W] } \\ \text { B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { BGR04[R/W] } \\ \text { B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	

(Continued)

MB91220/S Series

Address	Register				Block
	+0	+1	+2	+3	
000000ССн	$\begin{gathered} \text { SCR5 [R/W] B,H,W } \\ 00000000 \end{gathered}$	SMR5 [R/W] B,H,W 00000000	$\begin{gathered} \text { SSR5 [R/W] B,H,W } \\ 00001000 \end{gathered}$	$\begin{gathered} \text { RDR5 [R/W] B,H,W } \\ 00000000 \end{gathered}$	LIN-UART3
000000C4H	$\begin{gathered} \hline \text { ESCR5[R/W] } \\ \text { B,H,W } \\ 00000 \mathrm{X} 00 \end{gathered}$	$\begin{gathered} \text { ECCR5[R/W] } \\ \text { B,H,W } \\ 000000 \mathrm{XX} \end{gathered}$	$\begin{gathered} \hline \text { BGR15[R/W] } \\ \text { B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \hline \text { BGR05 [R/W] } \\ \text { B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	
000000C8н	SCRO [R/W] B,H,W 00000000	SMRO [R/W] B,H,W 00000000	$\begin{gathered} \text { SSRO [R/W, R] } \\ \text { B,H,W } \\ 00001000 \end{gathered}$	RDRO [R/W] B,H,W 00000000	LIN-UARTO
000000СС н $^{\text {¢ }}$	$\begin{gathered} \hline \text { ESCRO[R/W] } \\ \text { B,H,W } \\ 00000 \times 00 \end{gathered}$	$\begin{gathered} \hline \text { ECCRO[R/W] } \\ B, H, W \\ 000000 X X \end{gathered}$	$\begin{gathered} \hline \text { BGR10[R/W] } \\ \text { B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \hline \text { BGROO[R/W] } \\ \text { B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	
000000DOн	-				Reserved
000000D4н	TCDTO [R/W] H,W 0000000000000000		-	$\begin{gathered} \hline \text { TCCSO [R/W] } \\ \text { B,H,W } \\ 00000000 \end{gathered}$	16-bit Free-Run Timer 0
000000D8н	TCDT1 [R/W] H,W 0000000000000000		-	$\begin{gathered} \text { TCCS1 [R/W] } \\ \text { B,H,W } \\ 00000000 \end{gathered}$	16-bit Free-Run Timer 1
000000DCH to 000000EOH	-				Reserved
000000E4н	IPCP1 [R] H,W XXXXXXXX XXXXXXXX		IPCPO [R] H,W XXXXXXXX XXXXXXXX		$\begin{gathered} \text { 16-bit ICU } \\ 0,1 \end{gathered}$
000000E8н	-	-	-	ICS01 [R/W] B,H,W 00000000	
000000ЕСн	IPCP3 [R] H,W XXXXXXXX XXXXXXXX		IPCP2 [R] H,W XXXXXXXX XXXXXXXX		$\begin{gathered} \text { 16-bit ICU } \\ 2,3 \end{gathered}$
000000FOн	-	-	-	$\begin{gathered} \text { ICS23 [R/W] B,H,W } \\ 00000000 \end{gathered}$	
$\begin{array}{\|l\|} \hline \text { 000000F4н } \\ \text { to } \\ 00000104 \text { H } \end{array}$	-				Reserved
00000108н	OCCP1 [R/W] H,W XXXXXXXX XXXXXXXX		OCCPO [R/W] H,W XXXXXXXX XXXXXXXX		$\begin{gathered} \text { 16-bit OCU } \\ 0,1 \end{gathered}$
$0000010 \mathrm{CH}_{\text {}}$	-	-	-	-	
00000110н	-		OCSO1 [R/W] B,H,W 1110110000001100		
$\begin{array}{\|l\|} \hline 00000114 \text { H } \\ \text { to } \\ 000012 C_{H} \end{array}$	-				Reserved

(Continued)

MB91220/S Series

Address	Register				Block
	+0	+1	+2	+3	
00000130н	PWCSRO[R/W] B,H,W 0000000X 00000000		PWCRO[R] H,W 0000000000000000		PWC
00000134					
00000138	-	$\begin{gathered} \hline \text { PDIVRO[R/W] } \\ \text { B,-H,W } \\ ----000 \end{gathered}$	-	-	
$\begin{array}{\|l} \hline 0000013 C_{H} \\ \text { to } \\ 0000014 \mathbf{H}_{H} \end{array}$	-				Reserved
00000144н	-	WTDBL [R/W] B -------0	WTCR [R/W] B,H 00000000 000-00-0		Real Time Clock
00000148	-	WTBR [R/W] B ---XXXXX XXXXXXXX XXXXXXXX			
0000014Cн	$\begin{gathered} \hline \text { WTHR [R/W] B,H } \\ -- \text { XXXXX } \end{gathered}$	$\begin{aligned} & \text { WTMR [R/W] B,H } \\ & \text {--XXXXXX } \end{aligned}$	$\begin{aligned} & \text { WTSR [R/W] B } \\ & \text {--XXXXXX } \end{aligned}$	-	
00000150н	ADERH[R/W] B,H,W 1111111111111111		ADERL[R/W] B,H,W 111111111111111		ADC
00000154H	$\begin{gathered} \text { ADCS1[R/W] } \\ \text { B,H,W } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { ADCSO[R/W] } \\ \text { B,H,W } \\ 00000000 \end{gathered}$	$\underset{------X X}{\text { ADCR1[R] } B, H, W}$	ADCRO[R] B,H,W XXXXXXXX	
00000158H	$\begin{gathered} \text { ADCT1[R/W] } \\ \text { B,H,W } \\ 00010000 \end{gathered}$	$\begin{gathered} \text { ADCTO[R/W] } \\ \text { B,H,W } \\ 00101100 \end{gathered}$	$\begin{gathered} \text { ADSCH[R/W] } \\ \text { B,-H,W } \\ ---00000 \end{gathered}$	$\begin{gathered} \text { ADECH[R/W] } \\ \text { B,-H,W } \\ ---00000 \end{gathered}$	
0000015Сн	$\begin{aligned} & \text { CUCR[R/W] B,H,W } \\ & \hline------00 \end{aligned}$				Clock Calibrator
00000160н	CUTR1[R] B,H,W		$\begin{aligned} & \text { CUTR2[R] B,H,W } \\ & 0000000000000000 \end{aligned}$		
00000164н	PWC20[R/W] H,W ------XX XXXXXXXX		PWC10[R/W] H,W ------XX XXXXXXXX		SMCO
00000168H	-	PWCO[R/W] B $-0000--0$	$\begin{gathered} \hline \text { PWS20[R/W] } \\ \mathrm{B}, \mathrm{H}, \mathrm{~W} \\ -0000000 \end{gathered}$	$\begin{gathered} \hline \text { PWS10[R/W] } \\ \text { B,H,W } \\ --000000 \end{gathered}$	
0000016Сн	PWC21[R/W] H,W ------XX XXXXXXXX		PWC11[R/W] H,W ------XX XXXXXXXX		SMC1
00000170н	-	$\begin{gathered} \text { PWC1[R/W] B } \\ -0000--0 \end{gathered}$	$\begin{gathered} \hline \text { PWS21[R/W] } \\ \text { B,H,W } \\ -0000000 \end{gathered}$	$\begin{gathered} \hline \text { PWS11[R/W] } \\ \text { B,H,W } \\ --000000 \end{gathered}$	
00000174	PWC22[R/W] H,W ------XX XXXXXXXX		PWC12[R/W] H,W ------XX XXXXXXXX		SMC2
00000178	-	PWC2[R/W] B $-0000-0$	$\begin{gathered} \text { PWS22[R/W] } \\ \text { B,H,W } \\ -0000000 \end{gathered}$	$\begin{gathered} \text { PWS12[R/W] } \\ \text { B,H,W } \\ --000000 \end{gathered}$	

(Continued)

MB91220/S Series

Address	Register				Block
	+0	+1	+2	+3	
0000017Сн	PWC23[R/W] H,W ------XX XXXXXXXX		PWC13[R/W] H,W ------XX XXXXXXXX		SMC3
00000180н	-	$\begin{gathered} \text { PWC3[R/W] B } \\ -0000-0 \end{gathered}$	$\begin{gathered} \hline \text { PWS23[R/W] } \\ \mathrm{B}, \mathrm{H}, \mathrm{~W} \\ -0000000 \end{gathered}$	$\begin{gathered} \hline \text { PWS13[R/W] } \\ \text { B,H,W } \\ --000000 \end{gathered}$	
$\begin{aligned} & \hline 00000184 \mathrm{H} \\ & \text { to } \\ & 000001 \mathrm{~A} 4 \mathrm{H} \end{aligned}$					Reserved
000001A8н	$\begin{gathered} \hline \text { CANPRE[R/W] } \\ \text { B,H,W } \\ 000000000 \end{gathered}$	Reserved	-	-	CAN Prescaler
000001 ACH	- -				Reserved
000001B0н	-	TRGO[R/W] B,H,W 00000000	-	$\begin{gathered} \text { REVCO[R/W] } \\ \text { B,H,W } \\ 00000000 \end{gathered}$	PPGO
000001B4н	$\begin{gathered} \text { PRLHO[R/W]B,H,W } \\ \text { XXXXXXX } \end{gathered}$	$\begin{gathered} \text { PRLLO[R/W]B,H,W } \\ \text { XXXXXXX } \end{gathered}$	$\begin{gathered} \text { PRLH1[R/W]B,H,W } \\ \text { XXXXXXX } \end{gathered}$	$\begin{gathered} \text { PRLL1[R/W]B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	
000001B8н	$\begin{gathered} \text { PRLH2[R/W]B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { PRLL2[R/W]B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { PRLH3[R/W]B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { PRLL3[R/W]B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	
000001 BC H	$\begin{gathered} \hline \text { PPGCO[R/W] } \\ \text { B,H,W } \\ 0000000 \mathrm{X} \end{gathered}$	$\begin{gathered} \hline \text { PPGC1[R/W] } \\ \text { B,H,W } \\ 0000000 \mathrm{X} \end{gathered}$	$\begin{gathered} \hline \text { PPGC2[R/W] } \\ \text { B,H,W } \\ 0000000 \mathrm{X} \end{gathered}$	$\begin{gathered} \hline \text { PPGC3[R/W] } \\ \text { B,H,W } \\ 0000000 \mathrm{X} \end{gathered}$	
000001C0н	$\begin{gathered} \text { PRLH4[R/W]B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { PRLL4[R/W]B,H,W } \\ \text { XXXXXXX } \end{gathered}$	$\begin{gathered} \text { PRLH5[R/W]B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { PRLL5[R/W]B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	
000001C4н	$\begin{gathered} \text { PRLH6[R/W]B,H,W } \\ \text { XXXXXXX } \end{gathered}$	$\begin{gathered} \hline \text { PRLL6[R/W]B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { PRLH7[R/W]B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { PRLL7[R/W]B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	
000001C8H	$\begin{gathered} \hline \text { PPGC4[R/W] } \\ \text { B,H,W } \\ 0000000 \mathrm{X} \end{gathered}$	$\begin{gathered} \hline \text { PPGC5[R/W] } \\ \text { B,H,W } \\ 0000000 \mathrm{X} \end{gathered}$	$\begin{gathered} \text { PPGC6[R/W] } \\ \text { B,H,W } \\ 0000000 \mathrm{X} \end{gathered}$	$\begin{gathered} \hline \text { PPGC7[R/W] } \\ \text { B,H,W } \\ 0000000 \mathrm{X} \end{gathered}$	
000001СС ${ }_{\text {H }}$	-	-	-	-	
000001D0н	TRG1[R/W] B,H,W 00000000	-	$\begin{gathered} \hline \text { REVC1[R/W] } \\ \text { B,H,W } \\ 00000000 \end{gathered}$	-	PPG1
000001D4н	$\begin{gathered} \text { PRLH8[R/W]B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { PRLLB[R/W]B,H,W } \\ \text { XXXXXXX } \end{gathered}$	$\begin{gathered} \text { PRLH9[R/W]B,H,W } \\ \text { XXXXXXX } \end{gathered}$	$\begin{gathered} \text { PRLL9[R/W]B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	
000001D8н	$\begin{gathered} \text { PRLHA[R/W]B,H,W } \\ \text { XXXXXXX } \end{gathered}$	$\begin{gathered} \text { PRLLA[R/W]B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { PRLHB[R/W]B,H,W } \\ \text { XXXXXXX } \end{gathered}$	$\begin{gathered} \text { PRLLB[R/W]B,H,W } \\ \text { XXXXXXX } \end{gathered}$	
000001DCн	$\begin{gathered} \hline \text { PPGC8[R/W] } \\ \text { B,H,W } \\ 0000000 \mathrm{X} \end{gathered}$	$\begin{gathered} \hline \text { PPGC9[R/W] } \\ \text { B,H,W } \\ 0000000 \mathrm{X} \end{gathered}$	$\begin{gathered} \hline \text { PPGCA[R/W] } \\ \text { B,H,W } \\ 00000000 \mathrm{X} \end{gathered}$	$\begin{gathered} \hline \text { PPGCB[R/W] } \\ \text { B,H,W } \\ 0000000 \mathrm{X} \end{gathered}$	
000001EОн	$\begin{gathered} \hline \text { PRLHC[R/W] } \\ \text { B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { PRLLC[R/W]B,H,W } \\ \text { XXXXXXX } \end{gathered}$	$\begin{gathered} \text { PRLHD[R/W] } \\ \text { B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { PRLLD[R/W]B,H,W } \\ \text { XXXXXXX } \end{gathered}$	

(Continued)

MB91220/S Series

Address	Register				Block
	+0	+1	+2	+3	
000001E4н	PRLHE[R/W]B,H,W XXXXXXXX	PRLLE[R/W]B,H,W XXXXXXXX	$\begin{gathered} \text { PRLHF[R/W]B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	PRLLF[R/W]B,H,W XXXXXXXX	
000001E8H	$\begin{gathered} \hline \text { PPGCC[R/W] } \\ \text { B,H,W } \\ 0000000 \mathrm{X} \end{gathered}$	$\begin{gathered} \hline \text { PPGCD[R/W] } \\ \text { B,H,W } \\ 0000000 \mathrm{X} \end{gathered}$	$\begin{gathered} \text { PPGE[R/W]B,H,W } \\ 0000000 X \end{gathered}$	$\begin{gathered} \hline \text { PPGCF[R/W] } \\ \text { B,H,W } \\ 0000000 \mathrm{X} \end{gathered}$	PPG1
000001ECH	-	-	-	-	
$\begin{aligned} & \text { 000001FOH } \\ & \text { to } \\ & 000001 \mathrm{FC}_{\mathrm{H}} \end{aligned}$	-				Reserved
00000200н	DMACAO[R/W] B,H,W00000000 0000XXXX XXXXXXXX XXXXXXXX				DMAC
00000204н	DMACBO[R/W] B,H,W0000000000000000 XXXXXXXX XXXXXXXX				
00000208н	DMACA1[R/W] B,H,W * $000000000000 \times X X X$ XXXXXXXX XXXXXXXX				
0000020Сн	DMACB1[R/W] B,H,W0000000000000000 XXXXXXXX XXXXXXXX				
00000210н	DMACA2[R/W] B,H,W * $000000000000 \times X X X$ XXXXXXXX XXXXXXXX				
00000214 ${ }^{\text {H }}$	DMACB2[R/W] B,H,W0000000000000000 XXXXXXXX XXXXXXXX				
00000218н	DMACA3[R/W] B,H,W * $000000000000 \times X X X$ XXXXXXXX XXXXXXXX				
0000021 CH	DMACB3[R/W] B,H,W0000000000000000 XXXXXXXX XXXXXXXX				
00000220н	DMACA4[R/W] B,H,W00000000 0000XXXXXXXXXXX XXXXXXXX				
00000224н	DMACB4[R/W] B,H,W0000000000000000 XXXXXXXX XXXXXXXX				
$\begin{gathered} \text { 00000228н } \\ \text { to } \\ 0000023 C_{H} \end{gathered}$	Reserved				
00000240н	DMACR[R/W] B 0XX00000 XXXXXXXX XXXXXXXX XXXXXXXX				
$\begin{aligned} & \text { O0000244н } \\ & \text { to } \\ & 000003 E C_{H} \end{aligned}$	-				Reserved

MB91220/S Series

Address	Register				Block
	+0	+1	+2	+3	
000003F0н	$\begin{gathered} \text { BSDO [W] W } \\ \text { XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX } \end{gathered}$				Bit Search
000003F4н	BSD1 [R/W] $W$$x X ~ X X X X X X X X$				
000003F8н					
000003FCн	BSRR [R] WXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
00000400н	DDRO[R/W] B,H,W 00000000	DDR1[R/W] B,H,W 00000000	DDR2[R/W] B,H,W 00000000	$\begin{gathered} \text { DDR3[R/W] B,H,W } \\ 00000000 \end{gathered}$	Data Direction Register
00000404H	$\begin{gathered} \text { DDR4[R/W] B,H,W } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { DDR5[R/W] B,H,W } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { DRR6[R/W] B,H,W } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { DDR7[R/W] B,H,W } \\ ----0000 \end{gathered}$	
00000408н	$\begin{gathered} \text { DDR8[R/W] B,H,W } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { DDR9[R/W] B,H,W } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { DDRA[R/W] B,H,W } \\ ---0000 \end{gathered}$	$\begin{gathered} \text { DDRB[R/W] B,H,W } \\ 00000000 \end{gathered}$	
0000040Сн	$\begin{gathered} \text { DDRC[R/W] B,H,W } \\ ----0000 \end{gathered}$	$\begin{gathered} \text { DDRD[R/W] B,H,W } \\ 1111---- \end{gathered}$	DDRE[R/W] B,H,W 00000000	DDRF[R/W] B,H,W 00000000	
00000410н	$\begin{gathered} \text { DDRG[R/W] B,H,W } \\ ----0000 \end{gathered}$				
$\begin{array}{\|l\|} \hline 00000414 \mathrm{H} \\ \text { to } \\ 0000041 \mathrm{CH}_{\mathrm{H}} \end{array}$	-				Reserved
00000420н	$\begin{gathered} \text { PFRO[R/W] B,H,W } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { PFR1[R/W] B,H,W } \\ 00000000 \end{gathered}$	PFR2[R/W] B,H,W 00000000	$\begin{gathered} \hline \text { PFR3 }[\mathrm{R} / \mathrm{W}] \mathrm{B}, \mathrm{H}, \mathrm{~W} \\ 00000000 \end{gathered}$	Port Function Register
00000424	$\begin{gathered} \text { PFR4[R/W] B,H,W } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { PFR5[R/W] B,H,W } \\ 00000000 \end{gathered}$	Reserved	$\begin{gathered} \text { PFR7[R/W] B,H,W } \\ ---0000 \end{gathered}$	
00000428н	$\begin{gathered} \hline \text { PFR8[R/W] B,H,W } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { PFR9[R/W] B,H,W } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { PFRA[R/W] B,H,W } \\ ---0000 \end{gathered}$	$\begin{gathered} \hline \text { PFRB[R/W] B,H,W } \\ 00000000 \end{gathered}$	
0000042CH	$\begin{gathered} \text { PFRC[R/W] B,H,W } \\ ---0000 \end{gathered}$	PFRD[R/W] B,H,W 00000000	PFRE[R/W] B,H,W 00000000	$\begin{gathered} \hline \text { PFRF[R/W] B,H,W } \\ 00000000 \end{gathered}$	
00000430н	$\begin{gathered} \text { PFRG[R/W] B,H,W } \\ ---0000 \end{gathered}$	-	-	-	
$\begin{array}{\|l\|} \hline 00000434_{\mathrm{H}} \\ \text { to } \\ 000043 \mathrm{C}_{\mathrm{H}} \end{array}$	-				Reserved
00000440н	$\begin{gathered} \text { ICROO[R/W] B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR01[R/W] B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR02[R/W] B,H,W } \\ --11111 \end{gathered}$	$\begin{gathered} \text { ICR03[R/W] B,H,W } \\ ---11111 \end{gathered}$	Interrupt Control Unit
00000444н	$\begin{gathered} \text { ICRO4[R/W] B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR05[R/W] B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR06[R/W] B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR07[R/W] B,H,W } \\ ---11111 \end{gathered}$	
00000448	$\begin{gathered} \text { ICR08[R/W] B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR09[R/W] B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR10[R/W] B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR11[R/W] B,H,W } \\ ---11111 \end{gathered}$	
0000044Cн	$\begin{gathered} \text { ICR12[R/W] B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR13[R/W] B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR14[R/W] B,H,W } \\ --11111 \end{gathered}$	$\begin{gathered} \text { ICR15[R/W] B,H,W } \\ ---11111 \end{gathered}$	

(Continued)

MB91220/S Series

Address	Register				Block
	+0	+1	+2	+3	
00000450н	$\begin{gathered} \text { ICR16[R/W] B,H,W } \\ \substack{--11111} \end{gathered}$	$\begin{gathered} \text { ICR17[R/W] B,H,W } \\ \substack{--11111} \end{gathered}$	$\begin{gathered} \hline \text { ICR18[R/W] B,H,W } \\ --11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR19[R/W] B,H,W } \\ --11111 \end{gathered}$	Interrupt Control Unit
00000454н	$\begin{gathered} \text { ICR2O[R/W] B,H,W } \\ ---11111 \end{gathered}$	$\underset{---11111}{\text { ICR21[R/W] B,H,W }}$	$\begin{gathered} \hline \text { ICR22[R/W] B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR23[R/W] B,H,W } \\ ---11111 \end{gathered}$	
00000458н	$\begin{gathered} \text { ICR24[R/W] B,H,W } \\ \substack{--11111} \end{gathered}$	$\begin{gathered} \text { ICR25[R/W] B,H,W } \\ \substack{--11111} \end{gathered}$	$\begin{gathered} \hline \text { ICR26[R/W] B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR27[R/W] B,H,W } \\ --11111 \end{gathered}$	
0000045Сн	$\begin{gathered} \text { ICR28[R/W] B,H,W } \\ \substack{--11111} \end{gathered}$	$\begin{gathered} \text { ICR29[R/W] B,H,W } \\ \substack{--11111} \end{gathered}$	$\begin{gathered} \hline \text { ICR30[R/W] B,H,W } \\ --11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR31[R/W] B,H,W } \\ --11111 \end{gathered}$	
00000460н	$\begin{gathered} \text { ICR32[R/W] B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR33[R/W] B,H,W } \\ \substack{--11111} \end{gathered}$	$\begin{gathered} \hline \text { ICR34[R/W] B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR35[R/W] B,H,W } \\ ---11111 \end{gathered}$	
00000464	$\begin{gathered} \text { ICR36[R/W] B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR37[R/W] B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR38[R/W] B,H,W } \\ --11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR39[R/W] B,H,W } \\ --11111 \end{gathered}$	
00000468н	$\begin{gathered} \text { ICR40[R/W] B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR41[R/W] B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR42[R/W] B,H,W } \\ --11111 \end{gathered}$	$\begin{gathered} \text { ICR43[R/W] B,H,W } \\ --11111 \end{gathered}$	
0000046Cн	$\begin{gathered} \text { ICR44[R/W] B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR45[R/W] B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR46[R/W] B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR47[R/W] B,H,W } \\ ---11111 \end{gathered}$	
$\begin{gathered} \text { 00000470н } \\ \text { to } \\ 0000047 \text { CH }^{2} \end{gathered}$	-				Reserved
00000480н	$\begin{gathered} \text { RSRR [R/W] B,H,W } \\ 10000000 \end{gathered}$	$\begin{gathered} \text { STCR [R/W] B,H,W } \\ 00110011 \end{gathered}$	$\begin{gathered} \text { TBCR [R/W] B,H,W } \\ 00 X X X X 11 \end{gathered}$	$\begin{aligned} & \text { CTBR [W] B,H,W } \\ & \text { XXXXXXX } \end{aligned}$	Clock Control Unit
00000484н	CLKR [W] B,H,W 00000000	WPR [R/W] B,H,W Xxxxxxxx	$\begin{gathered} \hline \text { DIVRO }[R / W] \\ \text { B,H,W } \\ 00000011 \end{gathered}$	$\begin{gathered} \hline \text { DIVR1 [R/W] } \\ \text { B,H,W } \\ 00000000 \end{gathered}$	
00000488н	-	-	$\begin{gathered} \text { OSCCR }[R / W] B \\ \text { X000XXX0 } \end{gathered}$	-	Clock Control Unit
$0000048 \mathrm{CH}^{\text {¢ }}$	Reserved				
00000490н	$\begin{aligned} & \text { OSCR [R/W] B } \\ & 000--001 \end{aligned}$	Reserved			
$\begin{aligned} & \hline 00000494 \mathrm{H} \\ & \text { to } \\ & 000004 \mathrm{ACH} \end{aligned}$	-				Reserved

(Continued)

MB91220/S Series

Address	Register				Block
	+0	+1	+2	+3	
000004B0н	-	$\begin{gathered} \text { TRG2[R/W] B,H,W } \\ 00000000 \end{gathered}$	-	$\begin{gathered} \text { REVC2[R/W] } \\ \text { B,H,W } \\ 00000000 \end{gathered}$	PPG2
00000B4 ${ }_{\text {H }}$	$\begin{gathered} \text { PRLHG[R/W] } \\ \text { B,H,W } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { PRLLG[R/W]B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \hline \text { PRLHH[R/W] } \\ \text { B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{aligned} & \text { PRLLH[R/W]B,H,W } \\ & \text { XXXXXXXX } \end{aligned}$	
000004B8H	$\begin{gathered} \hline \text { PRLHI[R/W]B,H,W } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { PRLLI[R/W]B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{aligned} & \text { PRLHJ[R/W]B,H,W } \\ & \text { XXXXXXX } \end{aligned}$	$\begin{gathered} \text { PRLLJ[R/W]B,H,W } \\ \text { XXXXXXX } \end{gathered}$	
000004BCH	$\begin{gathered} \text { PPGCG[R/W] } \\ \text { B,H,W } \\ 0000000 \mathrm{X} \end{gathered}$	$\begin{gathered} \text { PPGCH[R/W] } \\ \text { B,H,W } \\ 0000000 \mathrm{X} \end{gathered}$	$\begin{gathered} \text { PPGCI[R/W]B,H,W } \\ 0000000 X \end{gathered}$	$\begin{aligned} & \text { PPGCJ[R/W]B,H,W } \\ & 0000000 X \end{aligned}$	
000004C0н	$\begin{gathered} \text { PRLHK[R/W]B,H,W } \\ 00000000 \end{gathered}$	$\begin{aligned} & \text { PRLLK[R/W]B,H,W } \\ & \text { XXXXXXX } \end{aligned}$	$\begin{aligned} & \text { PRLHL[R/W]B,H,W } \\ & \text { XXXXXXX } \end{aligned}$	$\begin{gathered} \hline \text { PRLLL[R/W]B,H,W } \\ \text { XXXXXXX } \end{gathered}$	
000004C4н	$\begin{gathered} \text { PRLHM[R/W] } \\ \text { B,H,W } \\ 000000000 \end{gathered}$	$\begin{gathered} \text { PRLLM[R/W]B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { PRLHN[R/W] } \\ \text { B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{aligned} & \text { PRLLN[R/W]B,H,W } \\ & \text { XXXXXXXX } \end{aligned}$	
000004C8H	$\begin{gathered} \text { PPGCK[R/W] } \\ \text { B,H,W } \\ 0000000 \mathrm{X} \end{gathered}$	$\begin{gathered} \text { PPGCL[R/W] } \\ \text { B,H,W } \\ 0000000 \mathrm{X} \end{gathered}$	$\begin{gathered} \text { PPGCM[R/W] } \\ \text { B,H,W } \\ 0000000 \mathrm{X} \end{gathered}$	$\begin{gathered} \text { PPGCN[R/W] } \\ \text { B,H,W } \\ 0000000 \mathrm{X} \end{gathered}$	
$000004 \mathrm{CCH}_{\mathrm{H}}$	-				
000004D0н	$\begin{gathered} \text { TRG3[R/W] B,H,W } \\ 00000000 \end{gathered}$	-	$\begin{gathered} \text { REVC3[R/W] } \\ \text { B,H,W } \\ 00000000 \end{gathered}$	-	PPG3
000004D4н	$\begin{gathered} \text { PRLHO[R/W] } \\ \text { B,H,W } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { PRLLO[R/W]B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { PRLHP[R/W]B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { PRLLP[R/W]B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	
000004D8H	$\begin{gathered} \text { PRLHQ[R/W] } \\ \text { B,H,W } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { PRLLQ[R/W]B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { PRLHR[R/W] } \\ \text { B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{aligned} & \text { PRLLR[R/W]B,H,W } \\ & \text { XXXXXXXX } \end{aligned}$	
000004DCH	$\begin{gathered} \text { PPGCO[R/W] } \\ \text { B,H,W } \\ 0000000 \mathrm{X} \end{gathered}$	$\begin{gathered} \text { PPGCP[R/W] } \\ \text { B,H,W } \\ 0000000 \mathrm{X} \end{gathered}$	$\begin{gathered} \text { PPGCQ[R/W] } \\ \text { B,H,W } \\ 0000000 \mathrm{X} \end{gathered}$	$\begin{gathered} \text { PPGCR[R/W] } \\ \text { B,H,W } \\ 0000000 \mathrm{X} \end{gathered}$	
000004E0н	$\begin{gathered} \text { PRLHS[R/W]B,H,W } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { PRLLS[R/W]B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { PRLHT[R/W]B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { PRLLT[R/W]B,H,W } \\ \text { XXXXXXX } \end{gathered}$	
000004E4н	$\begin{gathered} \text { PRLHU[R/W] } \\ \text { B,H,W } \\ 00000000 \end{gathered}$	$\begin{aligned} & \text { PRLLU[R/W]B,H,W } \\ & \text { XXXXXXXX } \end{aligned}$	$\begin{gathered} \text { PRLHV[R/W]B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { PRLLV[R/W]B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	
000004E8H	$\begin{gathered} \text { PPGCS[R/W] } \\ \text { B,H,W } \\ 0000000 \mathrm{X} \end{gathered}$	$\begin{gathered} \text { PPGCT[R/W] } \\ \text { B,H,W } \\ 0000000 \mathrm{X} \end{gathered}$	$\begin{gathered} \text { PPGCU[R/W] } \\ \text { B,H,W } \\ 0000000 \mathrm{X} \end{gathered}$	$\begin{gathered} \text { PPGCV[R/W] } \\ \text { B,H,W } \\ 0000000 \mathrm{X} \end{gathered}$	
000004ECH	-				

(Continued)

MB91220/S Series

Address	Register				Block
	+0	+1	+2	+3	
$\begin{gathered} \hline 000004 \text { FOH } \\ \text { to } \\ 000004 \text { F8н } \end{gathered}$	-				Reserved
000004FCH	PSCR[W] B XXXXXXXX	-	-	-	Port Input Level Select Register
$\begin{aligned} & \text { 00000500н } \\ & \text { to } \\ & 0000053 C_{H} \end{aligned}$	-				Reserved
00000540н	$\begin{gathered} \text { PILRO[R/W] B } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { PILR1[R/W] B } \\ 00000000 \end{gathered}$	Reserved	Reserved	Port Input Level Select Register
00000544	$\begin{gathered} \text { PILR4[R/W] B } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { PILR5[R/W] B } \\ 00000000 \end{gathered}$	Reserved	-	
00000548н					
0000054С ${ }_{\text {¢ }}$	-	-	$\begin{gathered} \text { PILRE[R/W] B } \\ 00000000 \end{gathered}$	Reserved	
00000550н					
$\begin{aligned} & \text { 00000554H } \\ & \text { to } \\ & 0000055 C_{H} \end{aligned}$					Reserved
00000560н	IBCRO[R/W] B,H,W 00000000	IBSRO[R] B,H,W 00000000	$\begin{gathered} \text { ITBAHO[R/W] } \\ \text { B,-H,W } \\ ----00 \end{gathered}$	$\begin{gathered} \text { ITBALO[R/W] } \\ \text { B,H,W } \\ 00000000 \end{gathered}$	${ }^{2} \mathrm{CO}$
00000564н	$\begin{gathered} \hline \text { ITMKHO[R/W] } \\ \text { B,H,W } \\ 00---11 \end{gathered}$	$\begin{gathered} \hline \text { ITMKLO[R/W] } \\ \text { B,H,W } \\ 11111111 \end{gathered}$	$\begin{gathered} \text { ISMKO[R/W] B,H,W } \\ 01111111 \end{gathered}$	ISBAO[R/W] B,H,W -0000000	
00000568н	-	IDARO[R/W] B,H,W 00000000	$\begin{gathered} \text { ICCRO[R/W] B,H,W } \\ -0011111 \end{gathered}$	$\underset{------0}{\substack{\text { IDBLO[R/W] B,H,W } \\ \hline}}$	
0000056С ${ }_{\text {¢ }}$	IBCR1[R/W] B,H,W 00000000	IBSR1[R] B,H,W 00000000	$\begin{gathered} \text { ITBAH1[R/W] } \\ \text { B,H,W } \\ -----00 \end{gathered}$	$\begin{gathered} \text { ITBAL1[R/W] } \\ \text { B,H,W } \\ 00000000 \end{gathered}$	${ }^{2} \mathrm{C} 1$
00000570н	$\begin{gathered} \text { ITMKH1[R/W] } \\ \text { B,H,W } \\ 00---11 \end{gathered}$	$\begin{gathered} \hline \text { ITMKL1[R/W] } \\ \text { B,H,W } \\ 11111111 \end{gathered}$	$\begin{gathered} \text { ISMK1[R/W] B,H,W } \\ 01111111 \end{gathered}$	ISBA1[R/W] B,H,W -0000000	
00000574	-	IDAR1[R/W] B,H,W 00000000	$\begin{gathered} \text { ICCR1[R/W] B,H,W } \\ -0011111 \end{gathered}$		
00000578н	-				Reserved
0000057Сн	Reserved	$\begin{gathered} \text { LVRC[R/W] B,H,W } \\ 00011000 \end{gathered}$	Reserved	Reserved	Detection of CPU operation
$\begin{aligned} & 00000580_{\mathrm{H}} \\ & \text { to } \\ & 000005 \mathrm{FCH} \end{aligned}$					Reserved

(Continued)

MB91220/S Series

(Continued)

Address	Register				Block
	+0	+1	+2	+3	
$\begin{aligned} & \hline \begin{array}{l} \text { 00000800н } \\ \text { to } \\ 0000 \text { FFCH } \end{array} \end{aligned}$	Reserved				
00001000н	DMASAO[R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				DMAC
00001004H	DMADAO[R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
00001008н	DMASA1[R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
0000100С ${ }_{\text {н }}$					
00001010н	DMASA2[R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
00001014	DMADA2[R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
00001018н	DMASA3[R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
0000101信	DMADA3[R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
00001020н	DMASA4[R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
00001024	DMADA4[R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
$\begin{array}{\|c} \text { 00001028н } \\ \text { to } \\ 00006 F F C H \end{array}$	Reserved				
00007000н	$\begin{aligned} & \hline \text { FLCR[R/W] } \\ & 01 \mathrm{XX1000} \end{aligned}$	-	-	-	Flash I/F
00007004н	FLWC[R/W] 00000011	-	-	-	
$\begin{array}{\|c} \hline 00007008 \text { to } \\ \text { to } \\ 000 \text { FFFC } \end{array}$	Reserved				
00020000н	CTRLRO 0000000000000001		STATRO 0000000000000000		CANO
00020004H	ERRCNTO0000000000000000		BTR00010001100000001		
00020008н	$\begin{gathered} \text { INTR0 } \\ 0000000000000000 \end{gathered}$		$\begin{gathered} \hline \text { TESTR0 } \\ 00000000 \text { r0000000* } \\ \text { (} r \text { : indication the level on the CAN bus) } \end{gathered}$		
0002000С ${ }_{\text {н }}$	BRPERO0000000000000000		Reserved		

(Continued)

MB91220/S Series

(Continued)

MB91220/S Series

Address	Register		Block
	+0 +1	+2 +3	
$\begin{array}{\|c\|} \hline 00020068 \text { н } \\ \text { to } \\ 002007 \text { C }_{H} \end{array}$	Reserved		CANO
00020080н	Reserved	TREQR10 0000000000000000	
$\begin{array}{\|l\|} \hline 00020084 \mathrm{H} \\ \text { to } \\ 0002008 \text { C }_{H} \end{array}$	Reserved		
00020090н	Reserved	NEWDT10 0000000000000000	
$\begin{array}{\|c\|} \hline 00020094 \text { н } \\ \text { to } \\ 002009 \text { CH }^{2} \end{array}$	Reserved		
000200AОн	Reserved	INTPEND10 0000000000000000	
$\begin{aligned} & \hline 000200 \mathrm{~A} 4 \mathrm{H} \\ & \text { to } \\ & 000200 \mathrm{ACH} \end{aligned}$	Reserved		
000200B0н	Reserved	MESVAL10 0000000000000000	
$\begin{aligned} & \text { O00200B4H } \\ & \text { to } \\ & 000200 \mathrm{BC} \end{aligned}$	Reserved		
00020100н	CTRLR1 0000000000000001	STATR1 0000000000000000	CAN1
00020104н	ERRCNT1 0000000000000000	$\begin{gathered} \hline \text { BTR1 } \\ 0010001100000001 \end{gathered}$	
00020108	INTR1 0000000000000000	$\begin{gathered} \text { TESTR1 } \\ 00000000 \text { r0000000 } \end{gathered}$	
0002010Сн	BRPER1 0000000000000000	Reserved	
00020110н	IF1CREQ1 0000000000000001	IF1CMSK1 0000000000000000	
00020114H	IF1MSK21 111111111111111	IF1MSK11 1111111111111111	
00020118H	IF1ARB21 0000000000000000	IF1ARB11 0000000000000000	

(Continued)

MB91220/S Series

(Continued)

MB91220/S Series

(Continued)

Address	Register					Block
	+0		+1	+2	+3	
$\begin{aligned} & \text { 00020184н } \\ & \text { to } \\ & 0002018 C_{H} \end{aligned}$	Reserved					CAN1
00020190н		Reserved				
$\begin{array}{\|l\|} \hline 00020194 \text { н } \\ \text { to } \\ 0002019 C_{H} \end{array}$						
000201AOн		Reserved				
$\begin{aligned} & \text { 000201A4H } \\ & \text { to } \\ & 000201 \mathrm{ACH} \end{aligned}$						
000201B0н		Reserved				
$\begin{aligned} & \text { 000201B4H } \\ & \text { to } \\ & 000201 \mathrm{BC} \end{aligned}$	Reserved					

*: The lower 16 bits (DTC [15:0]) of DMCA0 to DMCA4 cannot be accessed in bytes.
Notes : • Do not perform read modify write instructions to a register including write-on-bit.

- The data in the area reserved or - is undefined.

MB91220/S Series

VECTOR TABLE

Interrupt source	Interrupt number		Interrupt level	Offset	TBR default address	DMA start source
	Decimal	Hexadecimal				
Reset	0	00	-	3FCH	000FFFFFCн	-
Mode vector	1	01	-	3F8H	000FFFFF8	-
System reserved	2	02	-	3F4н	000FFFFF4	-
System reserved	3	03	-	3FOH	000FFFFF0н	-
System reserved	4	04	-	ЗЕСн	000FFFECH	-
System reserved	5	05	-	3E8н	000FFFE8н	-
System reserved	6	06	-	3E4H	000FFFEE4	-
Coprocessor absent trap	7	07	-	3E0н	000FFFEE0н	-
Coprocessor error trap	8	08	-	3DCH	000FFFDCн	-
INTE instruction	9	09	-	3D8н	000FFFD8н	-
System reserved	10	OA	-	3D4H	000FFFDD4	-
System reserved	11	OB	-	3D0н	000FFFD0н	-
Step trace trap	12	OC	-	3ССн	000FFFCCC	-
NMI request (ICE)	13	OD	-	3С8н	000FFFFC8	-
Undefined instruction exception	14	OE	-	3С4н	000FFFFC4н	-
NMI instruction	15	OF	$\begin{aligned} & 0 \mathrm{FH}_{\mathrm{H}} \\ & \text { Fixed } \end{aligned}$	3C0H	000FFFFCOH	-
External interrupt 0/1/2/6/7	16	10	ICR00	3BCH	000FFFBCH	-
External interrupt 3	17	11	ICR01	3В8н	000FFFB8н	6
External interrupt 4	18	12	ICR02	3В4н	000FFFFB4н	7
External interrupt 5	19	13	ICR03	3В0н	000FFFB0н	-
PPG0H/OL/8H/8L	20	14	ICR04	$3 \mathrm{ACH}^{\text {¢ }}$	000FFFACH	-
PPG2H/2L/9H/9L	21	15	ICR05	3А8н	000FFFA8н	-
PPG4H/4L/10H/10L	22	16	ICR06	3А4н	000FFFA4н	-
PPG6H/6L/11H/11L	23	17	ICR07	ЗАОн	000FFFA0н	-
Reload timer 0	24	18	ICR08	$39 \mathrm{CH}_{\mathrm{H}}$	000FFF9CH	8
Reload timer 1	25	19	ICR09	398н	000FFF98н	9
Reload timer 2	26	1A	ICR10	394н	000FFF944	10
LIN-UART0 (Reception)	27	1B	ICR11	390н	000FFF90н	-
LIN-UART0 (Transmission)	28	1 C	ICR12	$38 \mathrm{CH}_{\mathrm{H}}$	000FFF8CH	-
LIN-UART1 (Reception)	29	1D	ICR13	388H	000FFF88н	1
LIN-UART1 (Transmission)	30	1E	ICR14	384н	000FFF84н	4
LIN-UART2 (Reception)	31	1F	ICR15	380н	000FFF880н	2
LIN-UART2 (Transmission)	32	20	ICR16	$37 \mathrm{CH}_{\mathrm{H}}$	000FFF7CH	5
LIN-UART3 (Reception)	33	21	ICR17	378н	000FFF78н	-
LIN-UART3 (Transmission)	34	22	ICR18	374	000FFF744	-

(Continued)

MB91220/S Series

(Continued)

Interrupt source	Interrupt number		Interrupt level	Offset	TBR defaultaddress	$\begin{aligned} & \text { DMA } \\ & \text { start } \\ & \text { source } \end{aligned}$
	Decimal	Hexadecimal				
CANO	35	23	ICR19	370н	000FFFF70н	-
CAN1	36	24	ICR20	$36 \mathrm{CH}_{\text {+ }}$	000FFFF6CH	-
PPG12H/12L/I2C0	37	25	ICR21	368н	000FFF684	-
PPG13H/13L	38	26	ICR22	364	000FFF644	-
PPG14H/14L// ${ }^{\text {C }}$ 1	39	27	ICR23	360н	000FFF60н	-
PWC (Measurement completed)	40	28	ICR24	35 CH	000FFF55С	-
PWC (Overflow)	41	29	ICR25	358	000FFF588	-
DMAC	42	2A	ICR26	354	000FFF544	-
A/D converter	43	2B	ICR27	350н	000FFF50н	14
Real-time clock	44	2 C	ICR28	34 CH	000FFFF4CH	-
PPG15H/15L	45	2D	ICR29	348н	000FFF484	-
Main oscillation stabilization wait timer	46	2E	ICR30	344	000FFF44 ${ }_{\text {H }}$	-
Timebase timer overflow	47	2 F	ICR31	340 H	000FFF40н	-
PPG1H/1L	48	30	ICR32	33 CH	000FFFF3CH	11
PPG3H/3L	49	31	ICR33	338	000FFF384	12
PPG5H/5L	50	32	ICR34	334	000FFF344	13
PPG7H/7L	51	33	ICR35	330н	000FFF30н	3
16-bit free-run timer 0	52	34	ICR36	32 CH	000FFFF2CH	-
16-bit free-run timer 1	53	35	ICR37	328н	000FFF28н	-
ICU0	54	36	ICR38	324H	000FFF24н	-
ICU1	55	37	ICR39	320н	000FFF20н	-
ICU2	56	38	ICR40	$31 \mathrm{CH}_{\mathrm{H}}$	000FFFF1CH	-
ICU3	57	39	ICR41	318	000FFF18H	-
OCU0	58	3A	ICR42	314	000FFF14 ${ }_{\text {¢ }}$	-
OCU1	59	3B	ICR43	310 н	000FFF10н	-
Sound generator 0	60	3C	ICR44	30 CH	000FFFF0CH	-
Sound generator 1	61	3D	ICR45	308	000FFF08н	-
Sound generator 2	62	3 E	ICR46	304H	000FFFF04н	-
Delay interrupt	63	3 F	ICR47	300 H	000FFFOOH	-
System reserved	64	40	-	2 FC H	000FFEFFC ${ }_{\text {H }}$	-
System reserved	65	41	-	2F8н	000FFEF8 ${ }_{\text {H }}$	-
System reserved	$\begin{aligned} & 66 \\ & \text { to } \\ & 79 \end{aligned}$	$\begin{aligned} & \hline 42 \\ & \text { to } \\ & 4 \mathrm{~F} \end{aligned}$	-	$\begin{gathered} 2 \mathrm{~F} 4 \mathrm{H} \\ \text { to } \\ 2 \mathrm{COH} \end{gathered}$	000FFEF4 to 000FFECOH	-
INT instruction	$\begin{array}{r} 80 \\ \text { to } \\ 255 \end{array}$	$\begin{array}{r} 50 \\ \text { to } \\ \text { FF } \end{array}$	-	$\begin{gathered} 2 \mathrm{BC} \mathrm{H}_{\mathrm{H}} \\ \text { to } \\ 000_{\mathrm{H}} \end{gathered}$	$\begin{aligned} & \hline \text { O00FFEBCH } \\ & \text { to } \\ & 000 \mathrm{FFCOOH} \end{aligned}$	-

MB91220/S Series

TABLE OF PIN STATUS IN EACH MODE

- Single chip mode

Pin Name	Function name	Initial value		In SLEEP State	In STOP State		Remarks
		INITX=L	INITX=H		HIZ=0	HIZ=1	
INITX	INIT	Input permitted	Input permitted	Input permitted	Input pe	mitted	
X0	Main clock				$\mathrm{Hi}-\mathrm{Z}$ or perm	Input tted	
X1					" H " outpu perm	or input tted	
XOA	Sub clock				$\begin{aligned} & \hline \mathrm{Hi}-\mathrm{Z} \text { or } \\ & \text { perm } \end{aligned}$	input tted	
X1A					" H " outpu perm	or input tted	
MD0	Mode				Input permitted		
MD1							
MD2							
P00	SEG24	Output Hi-Z Input cut-off	Output Hi-Z Input permitted	Previous state held	Previous state held	Output Hi-Z Input cut-off	When LCD is used, output operation or output retention for both SLEEP/STOP
P01	SEG25						
P02	SEG26						
P03	SEG27						
P04	SEG28						
P05	SEG29						
P06	SEG30						
P07	SEG31/ATGX						
P10	SEG16	Output Hi-Z Input cut-off	Output$\mathrm{Hi}-\mathrm{Z}$ Input permitted	Previous state held	Previous state held	Output Hi-Z Input cut-off	When LCD is used, output operation or output retention for both SLEEP/STOP
P11	SEG17						
P12	SEG18						
P13	SEG19						
P14	SEG20						
P15	SEG21						
P16	SEG22						
P17	SEG23						

(Continued)

MB91220/S Series

		Initial value		In SLEEP State	In STOP State		Remarks
Name	Function name	INITX=L	INITX=H		HIZ=0	HIZ=1	
P20	SEG0	Output Hi-Z Input cut-off	Output Hi-Z Input permitted	Previous state held	Previous state held	Output Hi-Z Input cut-off	When LCD is used, output operation or output retention for both SLEEP/STOP
P21	SEG1						
P22	SEG2						
P23	SEG3						
P24	SEG4						
P25	SEG5						
P26	SEG6						
P27	SEG7						
P30	SEG8	Output Hi-Z Input cut-off	Output Hi-Z Input permitted	Previous state held	Previous state held	Output Hi-Z Input cut-off	When LCD is used, output operation or output retention for both SLEEP/STOP
P31	SEG9						
P32	SEG10						
P33	SEG11						
P34	SEG12						
P35	SEG13						
P36	SEG14						
P37	SEG15						
P40	SIN0/INT0	Output Hi-Z Input permitted	Output Hi-Z Input permitted	Previous state held	Previous state held	Output Hi-Z Input cut-off	Input of external interrupt is enabled by setting PFR
P41	SOTO						
P42	SCK0						
P43	SIN3/INT1						
P44	SOT3						
P45	SCK3						
P46	-						
P47	-						
P50	SIN4/CK0	Output Hi-Z Input permitted	Output Hi-Z Input permitted	Previous state held	Previous state held	Output Hi-Z Input cut-off	
P51	SOT4						
P52	SCK4						
P53	SIN5/CK1						
P54	SOT5						
P55	SCK5						
P56	OUTO						
P57	OUT1						

(Continued)

MB91220/S Series

		Initial value		In SLEEP State	In STOP State		Remarks
Name	Function name	INITX=L	INITX=H		HIZ=0	HIZ=1	
P60	ANO	Output Hi-Z Input cut-off	Output Hi-Z Input cut-off	Previous state held	Previous state held	Output Hi-Z Input cut-off	
P61	AN1						
P62	AN2						
P63	AN3						
P64	AN4						
P65	AN5						
P66	AN6						
P67	AN7						
P70	INT60/RX0	Output Hi-Z Input permitted	Input permitted	Previous state held	Previous state held	Output Hi-Z Input cut-off	Input of external interrupt is enabled by setting PFR
P71	TX0						
P72	INT7/RX1						
P73	TX1						
P80	AN16	Output Hi-Z Input cut-off	Output Hi-Z Input cut-off	Previous state held	Previous state held	Output Hi-Z Input cut-off	
P81	AN17						
P82	AN18						
P83	AN19						
P84	AN20/INT2						
P85	AN21/INT3						
P86	AN22/INT4						
P87	AN23/INT5						
P90	DAO	$\begin{array}{\|c\|} \hline \text { Output } \\ \text { Hi-Z } \\ \text { Input } \\ \text { permitted } \end{array}$	Output Hi-Z Input permitted	Previous state held	Previous state held	Output Hi-Z Input cut-off	When DA is used, output retention
P91	DA1						
P92	SGAO						
P93	SGO0						
P94	SGA1						
P95	SGO1						
P96	SGA2						
P97	SGO2						
PA0	PWM1P3	Output Hi-Z Input permitted	Output Hi-Z Input permitted	Previous state held	Previous state held	Output Hi-Z Input cut-off	
PA1	PWM1M3						
PA2	PWM2P3						
РА3	PWM2M3						

(Continued)

MB91220/S Series

(Continued)

MB91220/S Series

(Continued)

Pin Name	Function name	Initial value		In SLEEP State	In STOP State		Remarks
		INITX=L	INITX=H		HIZ=0	HIZ=1	
PF0	AN8	Output Hi-Z Input cut-off	Output Hi-Z Input cut-off	Previous state held	Previous state held	Output Hi-Z Input cut-off	
PF1	AN9						
PF2	AN10						
PF3	AN11						
PF4	AN12						
PF5	AN13						
PF6	AN14						
PF7	AN15						
PG0	PPGOH	Output Hi-Z Input permitted	Output Hi-Z Input permitted	Previous state held	Previous state held	Output Hi-Z Input cut-off	
PG1	TOT0/PPG2H						
PG2	TOT1/PPG4H						
PG3	TOT2/PPG6H						

MB91220/S Series

- External bus mode (8-bit)

Pin Name	Function name	Initial value		In SLEEP State	In STOP State		Remarks
		INITX=L	INITX=H		HIZ=0	HIZ=1	
INITX	INIT	Input permitted	Input permitted	Input permitted	Input pe	mitted	
X0	Main clock				$\begin{aligned} & \mathrm{Hi}-\mathrm{Z} \text { or } \\ & \text { perm } \end{aligned}$	Input itted	
X1					$\begin{aligned} & \text { "H" outpu } \\ & \text { perm } \end{aligned}$	or input ted	
XOA	Sub clock				$\begin{aligned} & \begin{array}{l} \mathrm{Hi}-\mathrm{Z} \text { or } \\ \text { perm } \end{array} \end{aligned}$	Input tted	
X1A					$\begin{aligned} & \text { "H" output } \\ & \text { permit } \end{aligned}$	or input ted	
MDO	Mode				Input permitted		
MD1							
MD2							
P00	SEG24	Output Hi-Z Input cut-off	Output Hi-Z Input permitted	Previous state held	Previous state held	Output Hi-Z Input cut-off	When LCD is used, output operation or output retention for both SLEEP/STOP
P01	SEG25						
P02	SEG26						
P03	SEG27						
P04	SEG28						
P05	SEG29						
P06	SEG30						
P07	SEG31/ATGX						
P10	D08	Output Hi-Z Input cut-off	Output Hi-Z Input permitted	Hi-Z	Hi-Z	Output Hi-Z Input cut-off	No port function
P11	D09						
P12	D10						
P13	D11						
P14	D12						
P15	D13						
P16	D14						
P17	D15						
P20	A00	Output Hi-Z Input cut-off	Output Hi-Z Input permitted	Address output	Address output	Output Hi-Z Input cut-off	No port function
P21	A01						
P22	A02						
P23	A03						
P24	A04						
P25	A05						
P26	A06						
P27	A07						

(Continued)

MB91220/S Series

(Continued)

	Function name	Initial value		In SLEEP State	In STOP State		Remarks
Name		INITX=L	INITX=H		HIZ=0	HIZ=1	
P30	A08	Output Hi-Z Input cut-off	Output Hi-Z Input permitted	Address output	Address output	Output Hi-Z Input cut-off	No port function
P31	A09						
P32	A10						
P33	A11						
P34	A12						
P35	A13						
P36	A14						
P37	A15						
P40	SINO/INT0	Output Hi-Z Input permitted	Output Hi-Z Input permitted	Previous state held	Previous state held	Output Hi-Z Input cut-off	Input of external interrupt is enabled by setting PFR When external bus signal is used, " H " output/clock output for SLEEP/STOP (Hi-Z=0)
P41	SOTO						
P42	SCK0						
P43	SIN3/INT1						
P44	SOT3						
P45	SCK3						
P46	ASX		$\begin{gathered} \hline \text { "H" } \\ \text { output } \end{gathered}$				
P47	SYSCLK		Clock output				
P50	SIN4/CK0/CSOX	$\underset{\text { Hi-Z }}{\text { Output }}$ Input permitted	Output Hi-Z Input permitted	Previous state held	Previous state held	Output Hi-Z Input cut-off	When external bus signal is used, " H " output for SLEEP/ STOP (Hi-Z=0)
P51	SOT4/CS1X						
P52	SCK4/CS2X						
P53	SIN5/CK1/CS3X						
P54	SOT5/RDX						
P55	SCK5/WR0X						
P56	OUTO						
P57	OUT1/RDY		Input permitted				
$\begin{gathered} \text { P60 } \\ \text { to } \\ \text { PG3 } \end{gathered}$			is the same	as the sing	gle chip.		

MB91220/S Series

- External bus mode (16-bit)

Pin Name	Function name	Initial value		In SLEEP State	In STOP State		Remarks
		INITX=L	INITX=H		HIZ=0	HIZ=1	
INITX	INIT	Input permitted	Input permitted	Input permitted	Input p	mitted	
X0	Main clock				Hi -Z or In	permitted	
X1					"H" outp perm	or input ted	
XOA	Sub clock				Hi-Z or Inp	permitted	
X1A					"H" outpu perm	or input ted	
MDO	Mode				Input permitted		
MD1							
MD2							
P00	D00	Output Hi-Z Input cut-off	Output $\mathrm{Hi}-\mathrm{Z}$ Input permitted	Hi-Z	Hi-Z	Output Hi-Z Input cut-off	No port function
P01	D01						
P02	D02						
P03	D03						
P04	D04						
P05	D05						
P06	D06						
P07	D07						
P10	D08	Output Hi-Z Input cut-off	Output Hi-Z Input permitted	Hi-Z	Hi-Z	Output Hi-Z Input cut-off	No port function
P11	D09						
P12	D10						
P13	D11						
P14	D12						
P15	D13						
P16	D14						
P17	D15						
P20	A00	Output Hi-Z Input cut-off	Output Hi-Z Input permitted	Address output	Address output	Output Hi-Z Input cut-off	No port function
P21	A01						
P22	A02						
P23	A03						
P24	A04						
P25	A05						
P26	A06						
P27	A07						

(Continued)

MB91220/S Series

(Continued)

	Function name	Initial value		In SLEEP State	In STOP State		Remarks
Name		INITX=L	INITX=H		HIZ=0	HIZ=1	
P30	A08	Output Hi-Z Input cut-off	Output $\mathrm{Hi}-\mathrm{Z}$ Input permitted	Address output	Address output	Output Hi-Z Input cut-off	No port function
P31	A09						
P32	A10						
P33	A11						
P34	A12						
P35	A13						
P36	A14						
P37	A15						
P40	SINO/INT0	Output Hi-Z Input permitted	Output Hi-Z Input permitted	Previous state held	Previous state held	Output Hi-Z Input cut-off	Input of external interrupt is enabled by setting PFR When external bus signal is used, " H " output/clock output for SLEEP/STOP (Hi-Z=0)
P41	SOTO						
P42	SCK0						
P43	SIN3/INT1						
P44	SOT3						
P45	SCK3						
P46	ASX		$\begin{gathered} \text { "H" } \\ \text { output } \end{gathered}$				
P47	SYSCLK		Clock output				
P50	SIN4/CK0/CSOX	OutputHi-Z Input permitted	Output Hi-Z Input permitted	Previous state held	Previous state held	Output Hi-Z Input cut-off	When external bus signal is used, " H " output for SLEEP/ STOP (Hi-Z=0)
P51	SOT4/CS1X						
P52	SCK4/CS2X						
P53	SIN5/CK1/CS3X						
P54	SOT5/RDX						
P55	SCK5/WR0X						
P56	OUT0/WR1X						
P57	OUT1/RDY		Input permitted				
$\begin{gathered} \text { P60 } \\ \text { to } \\ \text { PG3 } \end{gathered}$			is the same	as the sing	le chip.		

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Rating		Unit	Remarks
		Min	Max		
Power supply voltage*1	Vcc	Vss - 0.3	Vss +6.0	V	
	AVcc	Vss - 0.3	Vss +6.0	V	$\mathrm{AV} \mathrm{cc}=\mathrm{Vcc}^{* 2}$
	$V_{\text {avrh }}$	Vss - 0.3	$\mathrm{Vss}+6.0$	V	AV $\mathrm{cc} \geq \mathrm{V}_{\text {AVRH }}$
	DVcc	Vss - 0.3	$\mathrm{Vss}+6.0$	V	$\mathrm{VV}_{c c}=\mathrm{V}_{\mathrm{cc}}{ }^{* 2}$
Input voltage*1	V_{1}	$\mathrm{Vss}-0.3$	$\mathrm{Vcc}+6.0$	V	*9
Output voltage*1	Vo	Vss - 0.3	$\mathrm{Vcc}+6.0$	V	*9
"L" level maximum output current*3	lol1	-	15	mA	*5
	lol2	-	40	mA	*6
"L" level average output current*4	lolav1	-	4	mA	*5
	lolav2	-	30	mA	*6
"L" level total maximum output current	EloL1	-	120	mA	*5
	Elol2	-	330	mA	*6
"L" level total average output current	Elolav1	-	50	mA	*5
	Slolav2	-	160	mA	*6
" H " level maximum output current	Іон1*3	-	-15	mA	*5
	Іон2*3	-	-40	mA	*6
"H" level average output current	Іонav1*4	-	-4	mA	*5
	Iohav2*4	-	-30	mA	*6
" H " level total maximum output current	ऽloh1	-	-120	mA	*5
	$\Sigma \mathrm{loH}^{2}$	-	-330	mA	*6
" H " level total average output current	Slohav1 ${ }^{* 7}$	-	-50	mA	*5
	Slohav2*7	-	-160	mA	*6
Power consumption	PD	-	660	mW	
Operating temperature	TA	-40	+105	${ }^{\circ} \mathrm{C}$	In single chip operation
		-40	+85	${ }^{\circ} \mathrm{C}$	In external bus operation
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$	
+B input standard (Maximum clamp current)	Iclamp	-2	+2	mA	Except dedicated input pins, (PD3 to PDO) and D/AC output pins (P91, P90) *8
+B input standard (Total maximum clamp current)	Σ Iclamp	-20	+20	mA	

(Continued)

MB91220/S Series

(Continued)
*1 : The parameter is based on $\mathrm{Vss}=\mathrm{AV}$ ss $=\mathrm{DV}$ ss $=0.0 \mathrm{~V}$.
*2 : Note that $\mathrm{AV}_{\mathrm{cc}}$ and DV cc should not exceed V cc upon power-on and under other circumstances.
*3: The maximum output current defines the peak current value of each of the corresponding pins.
*4 : The average output current defines the average value of the current (100 ms) which passes through each of the corresponding pins. The average value represents a value calculated by multiplying the operating current by the operating rate.
*5: Output other than PA0 to PA3 pins, PB4 to PB7 pins, PC0 to PC3 pins, and PE0 to PE3 pins.
*6 : (PA0 to PA3, PE0 to PE3) + (PB4 to PB7, PC0 to PC3) .
The stepping motor controller pins are divided into two groups (8 pins each) and the value is calculated as the total current per group.
*7: The total average output current defines the average value of the current (100 ms) which passes through all the corresponding pins. The average value represents a value calculated by multiplying the operating current by the operating rate.
*8: +B input standard defines the current value for each of the corresponding pins.
*9: V_{I} and V_{o} should not exceed $\mathrm{V} \mathrm{cc}+0.3 \mathrm{~V}$. However, if the maximum current to/from an input is limited by some means with external components, when the +B input-enabled pin is used the Iclamp rating supersedes the V_{1} rating.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

Recommended example circuit

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

MB91220/S Series

2. Recommended Operating Conditions

$(\mathrm{Vss}=\mathrm{DV} \mathrm{ss}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V})$

Parameter	Symbol	Rating		Unit	Remarks
		Min	Max		
Power supply voltage	Vcc AVcc DVcc	4.5	5.5	V	Recommended guaranteed operating range
		3.5	5.5	V	Guaranteed operating range*1
		2.0	5.5	V	Guaranteed operating range for holding stop operation status*2 (MB91F223/S)
Smoothing capacitor*3	Cs	1		$\mu \mathrm{F}$	Use a ceramic capacitor or a capacitor with similar frequency characteristics.
Operating temperature	TA	-40	+105	${ }^{\circ} \mathrm{C}$	In single chip operation
		-40	+85	${ }^{\circ} \mathrm{C}$	In external bus operation

*1: Exclusive of A/D and D/A operation
*2 : Internal voltage held in RAM : 1.8 V (Min)/3.6 V (Max)
*3: For how to connect the smoothing capacitor Cs , refer to the diagram below.

- C Pin Connection Diagram

<+ B input (12 V to 16 V) conditions>
- Do not connect +B potential directly to a microcontroller pin.
- Always connect a resistor between the microcontroller pin and +B signal to limit the current. $\mathrm{l}_{\boldsymbol{н}}=2 \mathrm{~mA}$ per pin (Max.) [In the steady state and transient state between power-on and power-off, etc.] It can be connected to any general-purpose input port except the output pin for LCDC.
- The protection diode in the microcontroller turns the potential upon $+B$ input between the limiting resistor and microcontroller pin into "Vcc + protection diode ON voltage". Configure the circuit so that these are not interfered and the potential is not exceeded.

MB91220/S Series

3. DC Specifications

($\mathrm{T}_{\mathrm{A}}:-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{DV}_{\mathrm{ss}}=\mathrm{AV} \mathrm{Vs}_{\mathrm{ss}}=0.0 \mathrm{~V}$)

Parameter	Sym-	Pin name	Condition	Value			Unit	Remarks
				Min	Typ	Max		
"H" levelinputvoltage	Vihs	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P73, P80 to P87, P90 to P97, PA0 to PA3, PB0 to PB7, PC0 to PC3, PD0 to PD7, PE0 to PE7, PF0 to PF7, PG0 to PG3	-	0.8 Vcc	-	$\mathrm{Vcc}+0.3$	V	Automotive level input pins*1
	V_{1}	P40, P43, P50, P53 PE4 to PE7	-	0.7 Vcc	-	$\mathrm{Vcc}+0.3$	V	CMOS input pins*2
	$\mathrm{V}_{\text {IHT }}$	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P57, P60 to P67, PF0 to PF7	-	2.0	-	$\mathrm{Vcc}+0.3$	V	TTL input pins*4
	Vінм	MD0 to MD2	-	Vcc - 0.3	-	$\mathrm{Vcc}+0.3$	V	MD pins ${ }^{\text {* }}$
	$\mathrm{V}_{\text {HX }}$	X0, X1, X0A, X1A, INITX	-	0.8 Vcc	-	-	V	
$\begin{aligned} & \text { "L" level } \\ & \text { input } \\ & \text { voltage } \end{aligned}$	VILs	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P73, P80 to P87, P90 to P97, PA0 to PA3, PB0 to PB7, PC0 to PC3, PD0 to PD7, PE0 to PE7, PF0 to PF7, PG0 to PG3	-	Vss - 0.3	-	0.5 Vcc	V	Automotive level input pins* ${ }^{*}$
	VIL	P40, P43, P50, P53, PE4 to PE7	-	Vss - 0.3	-	0.3 Vcc	V	CMOS hysteresis input pins*2
	VIt	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P57, P60 to P67, PF0 to PF7	-	Vss - 0.3	-	0.8	V	TTL input pins*4
	VILM	MD0 to MD2	-	Vss - 0.3	-	Vss +0.3	V	MD pins*3
	VILX	X0, X1, X0A, X1A, INITX	-	-	-	0.2 Vcc	V	

(Continued)

MB91220/S Series

$\left(\mathrm{T}_{\mathrm{A}}:-40^{\circ} \mathrm{C}\right.$ to $+105^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%$, $\mathrm{Vss}=\mathrm{DV}$ ss $=\mathrm{AV}$ ss $=0.0 \mathrm{~V}$)

Parameter	$\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$	Pin name		Condition	Value			Unit	Remarks	
				Min	Typ	Max				
Power supply current*5	Icc	Operating frequency : $\mathrm{F}_{\mathrm{CP}}=32 \mathrm{MHz}$ in main mode			-	85	105	mA	Under normal operation	
					-	135	155	mA	In Flash-Write mode	
	Iccs	VCC	Operating frequency : $\mathrm{F}_{\mathrm{cP}}=32 \mathrm{MHz}$ in main sleep mode		-	40	70	mA		
	Iccı		$\begin{gathered} \hline \text { Operating frequency : } \\ F_{C P}=32 \mathrm{kHz}, \\ \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \text { in sub mode } \end{gathered}$		-	200	450	$\mu \mathrm{A}$	main oscillation/ PLL stops* ${ }^{*}$	
	Iccls		$\begin{gathered} \text { Operating frequency : } \\ \mathrm{FcP}_{\mathrm{cP}}=32 \mathrm{kHz}, \\ \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{VcC}=5 \mathrm{~V} \\ \text { in sub sleep mode } \end{gathered}$		-	180	400	$\mu \mathrm{A}$	main oscillation/ PLL stops* ${ }^{*}$	
	Icch		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{Vcc}=5 \mathrm{~V}$ in stop mode (oscillation stopped)		-	10	150	$\mu \mathrm{A}$	main clock/PLL/ sub-oscillation halted ${ }^{\star 7}$	
	Icts4m		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{Vcc}=5 \mathrm{~V} \\ \text { in stop mode } \\ \text { (RTC in use }{ }^{* 8} \text {) } \end{gathered}$		-	330	500	$\mu \mathrm{A}$	PLL/ sub-oscillation halted ${ }^{\star 7}$	
	I'ts32K		Sub clock frequency : $\mathrm{F}_{\mathrm{CP}}=32 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, $\mathrm{Vcc}=5 \mathrm{~V}$ in stop mode (Real Time Clock Operation*8)		-	40	180	$\mu \mathrm{A}$	main oscillation/ PLL stops* ${ }^{*}$	
Input leak current	IIL	All input pins			$\begin{gathered} \mathrm{V}_{\mathrm{cc}}=\mathrm{DV} \mathrm{Vcc}= \\ \mathrm{AV} \mathrm{~V}_{\mathrm{cc}}=5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{ss}}<\mathrm{V}_{1}<\mathrm{V}_{\mathrm{cc}} \end{gathered}$	-5	-	+5	$\mu \mathrm{A}$	
Input capacity 1	Cin1		than VCC, DVCC, DVSS, AVSS, РАЗ, PB7, PC3, PE3	-	-	5	15	pF		
Input capacity 2	Cin2	$\begin{aligned} & \text { PAO to } \\ & \text { PB4 to } \\ & \text { PC0 to } \\ & \text { PEO to } \end{aligned}$	PA3, PB7, PC3, PE3	-	-	15	45	pF		
$\begin{array}{\|l\|} \hline \text { Pull-up } \\ \text { resistance } \end{array}$	Rup	INITX		-	25	50	100	k Ω		

(Continued)

MB91220/S Series

($\mathrm{T}_{\mathrm{A}}:-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%$, V ss $=\mathrm{DV}_{\mathrm{ss}}=\mathrm{AV}$ ss $=0.0 \mathrm{~V}$)

Parameter	$\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$	Pin name	Condition	Value			Unit	Remarks
				Min	Typ	Max		
Output "H" voltage 1	Vor1	Other than PAO to PA3, PB4 to PB7, PC0 to PC3, PE0 to PE3	$\begin{gathered} \mathrm{Vcc}=4.5 \mathrm{~V} \\ \mathrm{loH}=-4.0 \mathrm{~mA} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{cc}}- \\ 0.5 \end{gathered}$	-	-	V	
Output "H" voltage 2	Voh2	PA0 to PA3, PB4 to PB7, PC0 to PC3, PE0 to PE3	$\begin{gathered} \mathrm{Vcc}=4.5 \mathrm{~V} \\ \text { ІoH }=-30.0 \mathrm{~mA} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{cc}}- \\ 0.5 \end{gathered}$	-	-	V	
Output "L" voltage 1	VoL1	Other than PA0 to PA3, PB4 to PB7, PC0 to PC3, PE0 to PE3	$\begin{aligned} & \mathrm{Vcc}=4.5 \mathrm{~V} \\ & \mathrm{loL}=4.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	
Output "L" voltage 2	Vol2	PA0 to PA3, PB4 to PB7, PC0 to PC3, PEO to PE3	$\begin{gathered} \mathrm{Vcc}=4.5 \mathrm{~V} \\ \mathrm{loL}=30.0 \mathrm{~mA} \end{gathered}$	-	-	0.55	V	
High current output Drive capacity Phase-to-phase deviation 1	$\Delta \mathrm{VoH}_{2}$	PWM1Pn, PWM1Mn, PWM2Pn, PWM2Mn, $\mathrm{n}=0$ to 3	$\begin{gathered} \mathrm{Vcc}=4.5 \mathrm{~V} \\ \mathrm{IOH}=30.0 \mathrm{~mA} \end{gathered}$ Maximum deviation of $\mathrm{V}^{\text {он }} 2$	0	-	90	mV	*9
High current output Drive capacity Phase-to-phase deviation 2	$\Delta \mathrm{V}$ оь2	PWM1Pn, PWM1Mn, PWM2Pn, PWM2Mn, $\mathrm{n}=0$ to 3	$\begin{gathered} \mathrm{Vcc}=4.5 \mathrm{~V} \\ \mathrm{loL}=30.0 \mathrm{~mA} \end{gathered}$ Maximum deviation of Vol2	0	-	90	mV	*9
COM0 to COM3 Output impedance	Rvcom	COM0 to COM3	-	-	-	4.5	k Ω	
SEG00 to SEG31 Output impedance	Rvseg	SEG0 to SEG31	-	-	-	30	k Ω	
LCDC leak current	Ilcoc	COMO to COM3, SEG0 to SEG31	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.5	-	+0.5	$\mu \mathrm{A}$	

*1: All input pins except X0, X1, X0A, X1A, MD0, MD1, MD2 and INITX pins
*2: CMOS input can be switched by the SIN of the LIN-UART and I2C input pin and switched by the input level selection register (PILR).
*3: MD0, MD1, MD2
*4 : TTL input can be selected by the external bus input pins and input pin only in the parallel writer mode. The external bus input pins (P00 to P17 and P57) can be switched by the input level selection register (PILR).
*5: They represent current values used when supplying power to the external clock from pin X1.
(Continued)

MB91220/S Series

(Continued)

*6 : Before switching from the main clock operation mode to the sub clock operation (operation in sub RUN, sub SLEEP, and sub RTC) mode, set the main oscillation stop bit (OSCDS1) in the oscillation control register (OSCCR) to "1" and the clock source to half of the source oscillation input, and then stop the PLL.
*7 : Before switching from the main clock operation mode to the stop mode, set the clock source to half of the source oscillation input, stop the PLL, set the OSDC1 bit in the standby control register (STCR) to "1". However, if using the main clock RTC operation, set the clock source to half of the source oscillation input, stop the PLL, and then set each clock of the CPU clock (CLKB), peripheral clock (CLKP), and external interface clock (CLKT) to the division ratio of 8 or more using the base clock divide setting registers 0 and 1 (DIVR0 and 1) before switching to the stop mode.
*8: The real time clock can be operated only in the 4 MHz main clock oscillation or 32 kHz sub clock oscillation.
*9 : Defined by the maximum deviation of $\mathrm{VoH}_{2} / \mathrm{Vol}_{2}$ of each pin, when PWM1P0, PWM1M0, PWM2P0 and PWM2M0 in ch. 0 are simultaneously turned on. Other channels are applied in the same condition.

MB91220/S Series

4. Flash Memory Write/Erase Characteristics

Parameter	Condition	Value			Unit	Remarks
		Min	Typ	Max		
Sector erase time	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ & \mathrm{Vcc}=5.0 \mathrm{~V} \end{aligned}$	-	1	15	s	Exclusive of internal write time prior to erase
Chip erase time	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ & \mathrm{Vcc}=5.0 \mathrm{~V} \end{aligned}$	-	5	-	s	Exclusive of internal write time prior to erase
Halfword write time	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ & \mathrm{Vcc}=5.0 \mathrm{~V} \end{aligned}$	-	16	3600	$\mu \mathrm{s}$	Exclusive of overhead time at system level
Chip write time	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ & \mathrm{Vcc}=5.0 \mathrm{~V} \end{aligned}$	-	2.1	-	s	Exclusive of overhead time at system level
Erase/write cycle	-	10000	-	-	cycle	
Flash memory data retain time	$\begin{aligned} & \begin{array}{l} \mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \\ \text { (average) } \end{array} \end{aligned}$	10	-	-	year	*

*: This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into average temperature at $+85^{\circ} \mathrm{C}$).

MB91220/S Series

5. AC Specifications

(1) Clock timing
($\mathrm{T}_{\mathrm{A}}:-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$; $\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=\mathrm{DV} \mathrm{ss}=\mathrm{AV}$ ss $=0.0 \mathrm{~V}$)

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min	Typ	Max		
Frequency of source oscillation clock	Fc	X0, X1	-	-	4	-	MHz	
	Fca	X0A, X1A		-	32.768	-	kHz	
Source oscillation clock cycle time	toyl	X0, X1		-	250	-	ns	
Input clock pulse width	$\begin{aligned} & \mathrm{P}_{\mathrm{ww}}, \\ & \mathrm{PwL} \end{aligned}$	X0		100	-	-	ns	The duty ratio normally ranges from 40% to 60%.
Input clock rise/fall time	tcr, tcf	X0	-	-	-	5	ns	When external clock is used
Frequency of internal operating clock	Fcp	-		-	-	32	MHz	
Internal operating clock cycle time	tcp	-	-	31.25	-	-	ns	
CAN PLL cycle jitter (When locked)	tpJ	-	-	- 10	-	+ 10	ns	$\mathrm{F}_{\mathrm{CP}}=32 \mathrm{MHz}$ (4 MHz , PLL multiplied by 8)

- X0/X1 Clock Timing

MB91220/S Series

- CAN PLL cycle jitter

Deviation time from the ideal clock is assured per cycle out of 20,000 cycles.
PLL output

Ideal clock

Deviation time

- Operations

Oscillation should be performed as described below :
[Source oscillation] : X0/X1: 4 MHz, PLL : multiplied by 8, Internal frequency : 32 MHz : X0A/X1A : 32 kHz, PLL : no multiplication, Internal frequency : 32 kHz
Note that the PLL oscillation stabilization wait time should be set to $500 \mu \mathrm{~s}$ or more.
Sample oscillation circuit

MB91220/S Series

AC specifications are defined by the following measurement standard voltage values :

- Input signal wave form

Automotive input pin

- Output signal wave form

Output pin

CMOS input pin

TTL input pin

MB91220/S Series

(2) Reset input
(T_{A} : $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%$, V ss $=\mathrm{DV}$ ss $=\mathrm{AV}$ ss $=0.0 \mathrm{~V}$)

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min	Max		
				500	-	ns	Under normal operation
INITX input time	tintı	INITX	-	Oscillation time of oscillator* + $10 \mathrm{tcp}+12 \mu \mathrm{~s}$	-	ms	In stop mode

*: The oscillation time of the oscillator refers to the time when the amplitude has reached 90%. The oscillation time of the crystal oscillator ranges from several ms to tens of ms . The oscillation time of the ceramic oscillator ranges from several hundreds to several ms, while that of the external clock is 0 ms .

- In stop mode

MB91220/S Series

[External reset input specifications (INITX) and internal reset signal cancellation timing]

- When an external reset input is generated, a maximum of 256 tcp is designed to be spent until it reaches the internal reset signal to transmit all reset signals to the internal logic (Max $8 \mu \mathrm{~s}$ at 32 MHz).
- The following chart shows how to set the timing for instruction execution start (start of application operation) after external reset input.

Time from external reset input to instruction start $=$ Max 256 tcp +61 tcp

- Timing Chart

[Pin state in external bus mode]

In the external bus mode, it is not guaranteed to hold the RAM value upon external reset (INITX = "0") input.
Beside that, the value of the internal bus is to be output to each pin during the time between the internal reset input and its cancellation.

- Timing Chart (Pin State for External Bus Mode : 1)

MB91220/S Series

It can be avoided by the following external reset input to continue $\mathrm{Hi}-\mathrm{Z}$.

- Timing Chart (Pin State for External Bus Mode : 2)

MB91220/S Series

(3) Power-on Conditions
$\left(\mathrm{T}_{\mathrm{A}}:-40^{\circ} \mathrm{C}\right.$ to $+105^{\circ} \mathrm{C} ; \mathrm{V}$ ss $=0.0 \mathrm{~V}$)

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min	Max		
Power supply rising time	tr	VCC	-	0.05	30	ms	
Power supply start voltage	Voff			-	0.2	V	
Power supply peak voltage	Von			2.7	-	V	
Power supply cut-off time	toff			50	-	ms	Due to the repetitive operation

Power supply drop time, power supply voltages and external reset input to retain RAM data in MB91220/S
Satisfy the following reset input standard to retain the RAM data used in the single chip mode.

Vcc (V)	Voltage drop time	External reset input standard (INITX)
dropped $4.0 \mathrm{~V} \rightarrow 3.5 \mathrm{~V}$	Min 256 tcp	Min 256 tcp

To retain RAM data, enter 256 tcp of INITX or more before dropping V cc to 3.5 V or lower.

MB91220/S Series

(4) Clock Output Timing

$(\mathrm{Vcc}=4.5 \mathrm{~V}$ to 5.5 V , V ss $=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V})$							
Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min	Max		
Cycle time	tocc	SYSCLK	-	tcpt	-	ns	*1
SYSCLK $\uparrow \rightarrow$ SYSCLK \downarrow	tchcı	SYSCLK		tovc / 2-10	tovc / $2+10$	ns	*2
SYSCLK $\downarrow \rightarrow$ SYSCLK \uparrow	tcıch	SYSCLK		tovc / 2-10	tovc / $2+10$	ns	*3

*1: tcyc is the frequency of one clock cycle including the gear cycle.
*2: The rating is under the conditions of "gear cycle $\times 1$ ".
When the gear cycle is set to $1 / 2,1 / 4$ or $1 / 8$, use the formula below by entering $1 / 2,1 / 4$ or $1 / 8$ in "n" respectively.

$$
(1 / 2 \times 1 / n) \times \operatorname{tccc}-10
$$

*3: The rating is under the conditions of "gear cycle $\times 1$ ".

MB91220/S Series

(5) Normal Bus Access : Read/Write Operation
$\left(\mathrm{V} \mathrm{cc}=4.0 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{Ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min	Max		
CS0X to CS3X setup	tcslch	$\begin{gathered} \text { SYSCLK } \\ \text { CSOX to CS3X } \end{gathered}$	AWRxL: $\mathrm{W} 02=0$	3	-	ns	
	tcsdich		AWRxL: $\mathrm{W} 02=0$	-10	-	ns	
CS0X to CS3X hold	tchcsi		-	3	tcyc / $2+30$	ns	
Address setup	tasch	$\begin{gathered} \text { SYSCLK } \\ \text { A00 to A15 } \end{gathered}$		3	-	ns	
	tasw	$\begin{aligned} & \text { WR0X, WR1X } \\ & \text { A00 to A15 } \end{aligned}$		3	-	ns	
	$t_{\text {ASRL }}$	$\begin{gathered} \text { RDX } \\ \text { A00 to A15 } \end{gathered}$		3	-	ns	
Address hold	tchax	$\begin{gathered} \text { SYSCLK } \\ \text { A00 to A15 } \end{gathered}$		3	tcyc $/ 2+30$	ns	
	twhax	WR0X, WR1X A00 to A15		3	-	ns	
	trhax	$\begin{gathered} \text { RDX } \\ \text { A00 to A15 } \end{gathered}$		3	-	ns	
Valid address \rightarrow valid data input time	tavdv	A00 to A15 D00 to D15		-	$\begin{gathered} 3 / 2 \times \text { tcyc }+ \\ 45 \end{gathered}$	ns	*1, *2
WR0X, WR1X \downarrow delay time	tchwL	$\begin{gathered} \text { SY: } \\ \text { WRD } \end{gathered}$		-	10	ns	
WR0X, WR1X \uparrow delay time	tchwn			-	10	ns	
WROX, WR1X minimum pulse width	twlwh	WR0X, WR1X		tcre - 10	-	ns	
Write data hold time	twhdx	$\begin{aligned} & \text { WR0X, WR1X, } \\ & \text { D00 to D15 } \end{aligned}$		3	-	ns	
RDX \downarrow delay time	tCHRL	SYSCLK		-	10	ns	
RDX \uparrow delay time	tchre	RDX		-	10	ns	
RDX $\downarrow \rightarrow$ valid data input time	trldv	$\begin{gathered} \text { RDX } \\ \text { D00 to D15 } \end{gathered}$		-	tcyc - 30	ns	*1
Data setup \rightarrow RDX \uparrow time	tosRH			3	-	ns	
RDX $\uparrow \rightarrow$ data hold time	$t_{\text {RHDX }}$			3	-	ns	
RDX minimum pulse width	trlRH	RDX		tcre - 10	-	ns	
ASX setup	taslch	$\begin{gathered} \text { SYSCLK } \\ \text { ASX } \end{gathered}$		3	-	ns	
ASX hold	tchash			3	tcyc / $2+25$	ns	

*1: If the bus is expanded by automatic wait insertion or RDY input, add time (tcyc \times the number of expanded cycles) to the rated value.
*2 : The rating is under the conditions of "gear cycle $\times 1$ ". When the gear cycle is set to $1 / 2$ to $1 / 16$, use the formula below by entering $1 / 2$ to $1 / 16$ in " n " respectively.

MB91220/S Series

Formula: $3 /(2 n) \times$ tcyc +45

MB91220/S Series

(6) Ready Input Timing

$(\mathrm{Vcc}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}$ ss $=\mathrm{AV}$ ss $=0.0 \mathrm{~V})$						
Parameter	Symbol	Pin name	Condition	Value		Unit
				Min	Max	
RDY setup time \rightarrow SYSCLK \downarrow	trovs	SYSCLK RDY	-	15	-	ns
SYSCLK $\uparrow \rightarrow$ RDY hold time	trovh	SYSCLK RDY		0	-	ns

MB91220/S Series

(7) UART Timing
(T_{A} : $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$; $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%$, V ss $=\mathrm{AV}$ ss $=0.0 \mathrm{~V}$)

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min	Max		
Serial clock Cycle time	tscrc	SCKO, SCK3 to SCK5	-	8 tcp	-	ns	In internal shift clock mode, output pin; $\mathrm{CL}=80 \mathrm{pF}+1 \mathrm{TTL}$
SCK $\downarrow \rightarrow$ SOT delay time	tstov	SCKO, SCK3 to SCK5, SOTO, SOT3 to SOT5		-80	+80	ns	
$\begin{aligned} & \text { Valid SIN } \rightarrow \\ & \text { SCK } \uparrow \end{aligned}$	tivs	SCKO, SCK3 to SCK5, SINO, SIN3 to SIN5		100	-	ns	
$\begin{aligned} & \mathrm{SCK} \uparrow \rightarrow \\ & \text { Valid SIN hold time } \end{aligned}$	tsHIX			60	-	ns	
Serial clock "H" pulse width	tshsL	SCKO, SCK3 to SCK5	-	4 tcp	-	ns	In internal shift clock mode, output pin; $C \mathrm{~L}=80 \mathrm{pF}+1 \mathrm{TTL}$
Serial clock "L" pulse width	tsısh			4 tcp	-	ns	
SCK $\downarrow \rightarrow$ SOT delay time	tslov	SCKO, SCK3 to SCK5, SOTO, SOT3 to SOT5		-	150	ns	
$\begin{aligned} & \text { Valid SIN } \rightarrow \\ & \text { SCK } \end{aligned}$	tivsh	SCKO, SCK3 to SCK5, SINO, SIN3 to SIN5		60	-	ns	
$\begin{aligned} & \text { SCK } \uparrow \rightarrow \\ & \text { Valid SIN hold time } \end{aligned}$	tsHIX			60	-	ns	

Notes: - The above ratings are the values for clock synchronous mode.

- $\mathrm{C} L$ is a load capacitance connected to pins during testing.

MB91220/S Series

- Internal Shift Clock Mode

- External Shift clock Mode

MB91220/S Series

(8) Timer Input Timing

Parameter	Symbol	Pin name	Condition	Value		Unit
				Min	Max	
Input pulse width	tтiwh ttiwn	TIN0 to TIN2, PWC0 INO to IN3	-	4 tcp	-	ns

- Timer Input Timing

(9) Trigger input Timing

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min	Max		
Input pulse width	ttrah, ttral	INT0 to INT7, ATGX, RX0, RX1	-	5 tcp	-	ns	
				1	-	$\mu \mathrm{s}$	At STOP mode

- Timer input timing

MB91220/S Series

6. A/D Converter Electrical Characteristics

(1) Electrical Characteristics
(T_{A} : $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C} ; \mathrm{Vcc}=\mathrm{AV} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%$, $\mathrm{V} \mathrm{ss}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V}$)

Parameter	$\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$	Pin name	Value			Unit	Remarks
			Min	Typ	Max		
Resolution	-	-	-	-	10	bit	
Total error	-	-	-	-	± 3.0	LSB	
Non-linearity error	-	-	-	-	± 2.5	LSB	
Differential linearity error	-	-	-	-	± 1.9	LSB	
Zero transition voltage	Vот	AN0 to AN23	$\begin{aligned} & \hline \mathrm{AV} \text { ss - } \\ & 1.5 \mathrm{LSB} \end{aligned}$	$\begin{gathered} \hline \mathrm{A} \mathrm{Vss}_{\mathrm{ss}}+ \\ 0.5 \mathrm{LSB} \end{gathered}$	$\begin{gathered} \hline \mathrm{AV} \text { ss + } \\ 2.5 \mathrm{LSB} \end{gathered}$	V	$1 \mathrm{LSB}=$
Full-scale transition voltage	Vfst	AN0 to AN23	$\begin{aligned} & \hline \text { AVRH - } \\ & \text { 3.5 LSB } \end{aligned}$	$\begin{aligned} & \hline \text { AVRH - } \\ & 1.5 \mathrm{LSB} \end{aligned}$	$\begin{aligned} & \hline \text { AVRH + } \\ & \text { 0.5 LSB } \end{aligned}$	V	(AVRH - AVss) / 1024
Sampling time	tsmp	-	600	-	-	ns	$\mathrm{AV} \mathrm{cc} \geq 4.5 \mathrm{~V}^{* 1}$
			1200	-	-	ns	$4.0 \mathrm{~V} \leq \mathrm{AV}_{\mathrm{cc}}<4.5 \mathrm{~V}^{* 2}$
Compare time	tcmp	-	990	-	-	ns	$\mathrm{AV} \mathrm{cc} \geq 4.5 \mathrm{~V}^{* 1}$
			1980	-	-	ns	$4.0 \mathrm{~V} \leq \mathrm{AV} \mathrm{cc}<4.5 \mathrm{~V}^{* 2}$
A/D conversion time	tcnv	-	3	-	-	$\mu \mathrm{s}$	tsmp + tcmp
Analog port input current	Iain	ANO to AN23	-	-	10	$\mu \mathrm{A}$	$\mathrm{AV}_{\mathrm{cc}} \leq \mathrm{V}_{\text {AIN }} \leq \mathrm{AV}^{\text {ss }}$
Analog input voltage	$\mathrm{V}_{\text {AIN }}$	AN0 to AN23	0	-	AVRH	V	
Standard voltage	AVR +	AVRH	4.0	-	AVcc	V	
Power supply current	I_{A}	AVCC	-	2.4	4.7	mA	
	ІАн		-	-	5	$\mu \mathrm{A}$	*3
Standard voltage supply current	IR	AVRH	-	500	900	$\mu \mathrm{A}$	$\mathrm{V}_{\text {AVRH }}=5.0 \mathrm{~V}$
	Іrh	AVRH	-	-	5	$\mu \mathrm{A}$	*3
Variation between channels	-	AN0 to AN23	-	-	5	LSB	

*1 : Assume that the output impedance of the external analog signal is $2.74 \mathrm{k} \Omega$ or less. If the output impedance is high, the sampling time is longer than the standard value (refer to note). For actual use, set tconv \leq tsmp + tcmp.
*2 : Assume that the output impedance of the external analog signal is $0.7 \mathrm{k} \Omega$ or less. If the output impedance is high, the sampling time is longer than the standard value (refer to note). For actual use, set tcnv \leq tsmp + tcmp.
*3: This defines the power supply current when the A/D converter is not in operation and the CPU is stopped (at $\mathrm{V}_{\mathrm{cc}}=\mathrm{AV} \mathrm{cc}=\mathrm{AVRH}=5.0 \mathrm{~V}$).
(Continued)

MB91220/S Series

(Continued)
Note : The external impedance of the analog input and its sampling time A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sampling and hold capacitor is insufficient. Therefore, it adversely affects A/D conversion precision

- Analog input circuit model

Note : The values are reference values.

$$
\begin{array}{cc}
\mathrm{R} & \mathrm{C} \\
3.95 \mathrm{k} \Omega(\max) & 17 \mathrm{pF}(\max)
\end{array}
$$

MB91220/S Series

To satisfy the A/D conversion precision standard, adjust the register value and operating frequency, or decrease the external impedance in accordance with the relationship between the external impedance and minimum sampling time, in order to make the sampling time longer than the minimum value.

- The relationship between the external impedance and minimum sampling time
- At $4.5 \mathrm{~V} \leq \mathrm{AV}_{\mathrm{cc}} \leq 5.5 \mathrm{~V}$
[External impedance $=0 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$]

- At $4.0 \mathrm{~V} \leq \mathrm{AV}_{\mathrm{cc}}<4.5 \mathrm{~V}$

$$
\text { [External impedance }=0 \mathrm{k} \Omega \text { to } 100 \mathrm{k} \Omega \text {] }
$$

[External impedance $=0 \mathrm{k} \Omega$ to $20 \mathrm{k} \Omega$]

Minimum sampling time ($\mu \mathrm{s}$)
[External impedance $=0 \mathrm{k} \Omega$ to $20 \mathrm{k} \Omega$]

- If the sampling time is not sufficient, connect a capacitor of about $0.1 \mu \mathrm{~F}$ to the analog input pin.
- Measure against noise for reference power supply (AVRH pin) It is recommended that a bypass capacitor of several $\mu \mathrm{F}$ be input to the reference power supply (AVRH).
- About errors IAVRH - AVssl becomes smaller, values of relative errors grow larger.
- Others

When placing a DC blocking capacitor between the external circuit and input pin,set the capacitance value by multiplying Csн and several thousands as a guideline in order to minimize the impact from dividing voltage capacitance with Csh.

MB91220/S Series

- Analog Input Equivalent Circuit

<Recommended parameter values for each element>

$$
\begin{aligned}
& \mathrm{rs}=5 \mathrm{k} \Omega \text { or less } \\
& \mathrm{RsH}=\text { approx. } 2.5 \mathrm{k} \Omega \\
& \mathrm{CsH}=\text { approx. } 10 \mathrm{pF}
\end{aligned}
$$

Note : These element parameters should be regarded as tentative values used only for design purposes. They do not guarantee the operation.

MB91220/S Series

(2) Term Definitions

- Resolution

Level of analog variation that can be distinguished by the A/D converter.
When the number of bits is 10 , the analog voltage can be resolved into $2^{10}=1024$.

- Total error

Difference between actual and theoretical values, which is a total value derived from an offset error, gain error, non-linearity error and noise.

- Linearity error

Deviation between the value along a straight line connecting the zero transition point
("00 00000000 " \longleftrightarrow "00 00000001 ") of a device and the full-scale transition point
("11 11111110 " \leftarrow " 111111 1111") compared with the actual conversion values obtained.

- Differential linearity error

Deviation of input voltage, which is required for changing output code by1 LSB, from an ideal value.

Total error

Total error of digital output " N " $=\frac{\mathrm{V}_{\mathrm{NT}}-\{1 \mathrm{LSB} \times(\mathrm{N}-1)+0.5 \mathrm{LSB}\}}{1 \mathrm{LSB}}$ [LSB]
1 LSB (Ideal value) $=\frac{\mathrm{AV} \mathrm{cc}-\mathrm{AV} \text { ss }}{1024}[\mathrm{~V}]$

Vот (Ideal value) $=\mathrm{AV}$ ss +0.5 LSB [V]
$\mathrm{V}_{\text {FST }}$ (Ideal value) $=\mathrm{AV}$ cc -1.5 LSB [V]
V_{Nt} : A voltage at which digital output transits from $(\mathrm{N}-1)$ н to N_{H}.

MB91220/S Series

(Continued)

MB91220/S Series

7. Electrical Characteristics for the D/A Converter

Parameter	Symbol	Pin	Value			Unit	Remarks
			Min	Typ	Max		
Resolution	-	-	-	-	8	bit	
Differential linearity error	-	-	-	-	± 3	LSB	
Conversion time	-	-	-	0.45	-	$\mu \mathrm{s}$	At load capacitance 20 pF
	-	-	-	2.00	-	$\mu \mathrm{s}$	At load capacitance 100 pF
Reference power supply current	love	AVCC	-	162	920	$\mu \mathrm{A}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
	loves	AVCC	-	-	0.1	$\mu \mathrm{A}$	At power down
Analog output impedance	-	-	2.0	3.0	3.9	$\mathrm{k} \Omega$	

MB91220/S Series

ORDERING INFORMATION

Part number	Package	Remarks
MB91V220ACR-ES	401-pin ceramic PGA (PGA-401C-A02)	Evaluation product
MB91F223PFV-GSE1	144-pin plastic LQFP (FPT-144P-M08)	Sub clock support
MB91F223SPFV-GSE1	144-pin plastic LQFP (FPT-144P-M08)	Sub clock not yet support

MB91220/S Series

PACKAGE DIMENSION

Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/fj/DATASHEET/ef-ovpklv.html

MB91220/S Series

The information for microcontroller supports is shown in the following homepage.
http://www.fujitsu.com/global/services/microelectronics/product/micom/support/index.html

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.
If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.
The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

Edited Business Promotion Dept.

[^0]: "Check Sheet" is seen at the following support page
 URL : http://www.fujitsu.com/global/services/microelectronics/product/micom/support/index.html

